These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 21640027)
1. Eliminating animal facility light-at-night contamination and its effect on circadian regulation of rodent physiology, tumor growth, and metabolism: a challenge in the relocation of a cancer research laboratory. Dauchy RT; Dupepe LM; Ooms TG; Dauchy EM; Hill CR; Mao L; Belancio VP; Slakey LM; Hill SM; Blask DE J Am Assoc Lab Anim Sci; 2011 May; 50(3):326-36. PubMed ID: 21640027 [TBL] [Abstract][Full Text] [Related]
2. Circadian stage-dependent inhibition of human breast cancer metabolism and growth by the nocturnal melatonin signal: consequences of its disruption by light at night in rats and women. Blask DE; Dauchy RT; Brainard GC; Hanifin JP Integr Cancer Ther; 2009 Dec; 8(4):347-53. PubMed ID: 20042410 [TBL] [Abstract][Full Text] [Related]
3. Effects of spectral transmittance through standard laboratory cages on circadian metabolism and physiology in nude rats. Dauchy RT; Dauchy EM; Hanifin JP; Gauthreaux SL; Mao L; Belancio VP; Ooms TG; Dupepe LM; Jablonski MR; Warfield B; Wren MA; Brainard GC; Hill SM; Blask DE J Am Assoc Lab Anim Sci; 2013 Mar; 52(2):146-56. PubMed ID: 23562097 [TBL] [Abstract][Full Text] [Related]
4. Effect of Daytime Blue-enriched LED Light on the Nighttime Circadian Melatonin Inhibition of Hepatoma 7288CTC Warburg Effect and Progression. Dauchy RT; Wren-Dail MA; Dupepe LM; Hill SM; Xiang S; Anbalagan M; Belancio VP; Dauchy EM; Blask DE Comp Med; 2018 Aug; 68(4):269-279. PubMed ID: 29875029 [TBL] [Abstract][Full Text] [Related]
5. Light at night activates IGF-1R/PDK1 signaling and accelerates tumor growth in human breast cancer xenografts. Wu J; Dauchy RT; Tirrell PC; Wu SS; Lynch DT; Jitawatanarat P; Burrington CM; Dauchy EM; Blask DE; Greene MW Cancer Res; 2011 Apr; 71(7):2622-31. PubMed ID: 21310824 [TBL] [Abstract][Full Text] [Related]
6. Melatonin-depleted blood from premenopausal women exposed to light at night stimulates growth of human breast cancer xenografts in nude rats. Blask DE; Brainard GC; Dauchy RT; Hanifin JP; Davidson LK; Krause JA; Sauer LA; Rivera-Bermudez MA; Dubocovich ML; Jasser SA; Lynch DT; Rollag MD; Zalatan F Cancer Res; 2005 Dec; 65(23):11174-84. PubMed ID: 16322268 [TBL] [Abstract][Full Text] [Related]
7. Effect of spectral transmittance through red-tinted rodent cages on circadian metabolism and physiology in nude rats. Dauchy RT; Wren MA; Dauchy EM; Hanifin JP; Jablonski MR; Warfield B; Brainard GC; Hill SM; Mao L; Dupepe LM; Ooms TG; Blask DE J Am Assoc Lab Anim Sci; 2013 Nov; 52(6):745-55. PubMed ID: 24351763 [TBL] [Abstract][Full Text] [Related]
8. Light contamination during the dark phase in "photoperiodically controlled" animal rooms: effect on tumor growth and metabolism in rats. Dauchy RT; Sauer LA; Blask DE; Vaughan GM Lab Anim Sci; 1997 Oct; 47(5):511-8. PubMed ID: 9355094 [TBL] [Abstract][Full Text] [Related]
9. Melatonin inhibition of cancer growth in vivo involves suppression of tumor fatty acid metabolism via melatonin receptor-mediated signal transduction events. Blask DE; Sauer LA; Dauchy RT; Holowachuk EW; Ruhoff MS; Kopff HS Cancer Res; 1999 Sep; 59(18):4693-701. PubMed ID: 10493527 [TBL] [Abstract][Full Text] [Related]
10. Dark-phase light contamination disrupts circadian rhythms in plasma measures of endocrine physiology and metabolism in rats. Dauchy RT; Dauchy EM; Tirrell RP; Hill CR; Davidson LK; Greene MW; Tirrell PC; Wu J; Sauer LA; Blask DE Comp Med; 2010 Oct; 60(5):348-56. PubMed ID: 21262119 [TBL] [Abstract][Full Text] [Related]
11. Daytime Blue Light Enhances the Nighttime Circadian Melatonin Inhibition of Human Prostate Cancer Growth. Dauchy RT; Hoffman AE; Wren-Dail MA; Hanifin JP; Warfield B; Brainard GC; Xiang S; Yuan L; Hill SM; Belancio VP; Dauchy EM; Smith K; Blask DE Comp Med; 2015 Dec; 65(6):473-85. PubMed ID: 26678364 [TBL] [Abstract][Full Text] [Related]
12. Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue. Pauley SM Med Hypotheses; 2004; 63(4):588-96. PubMed ID: 15325001 [TBL] [Abstract][Full Text] [Related]
13. Effects of light at night on laboratory animals and research outcomes. Emmer KM; Russart KLG; Walker WH; Nelson RJ; DeVries AC Behav Neurosci; 2018 Aug; 132(4):302-314. PubMed ID: 29952608 [TBL] [Abstract][Full Text] [Related]
14. Doxorubicin resistance in breast cancer is driven by light at night-induced disruption of the circadian melatonin signal. Xiang S; Dauchy RT; Hauch A; Mao L; Yuan L; Wren MA; Belancio VP; Mondal D; Frasch T; Blask DE; Hill SM J Pineal Res; 2015 Aug; 59(1):60-9. PubMed ID: 25857269 [TBL] [Abstract][Full Text] [Related]
15. The influence of red light exposure at night on circadian metabolism and physiology in Sprague-Dawley rats. Dauchy RT; Wren MA; Dauchy EM; Hoffman AE; Hanifin JP; Warfield B; Jablonski MR; Brainard GC; Hill SM; Mao L; Dobek GL; Dupepe LM; Blask DE J Am Assoc Lab Anim Sci; 2015 Jan; 54(1):40-50. PubMed ID: 25651090 [TBL] [Abstract][Full Text] [Related]
16. Light exposure at night disrupts host/cancer circadian regulatory dynamics: impact on the Warburg effect, lipid signaling and tumor growth prevention. Blask DE; Dauchy RT; Dauchy EM; Mao L; Hill SM; Greene MW; Belancio VP; Sauer LA; Davidson L PLoS One; 2014; 9(8):e102776. PubMed ID: 25099274 [TBL] [Abstract][Full Text] [Related]
17. Circadian regulation of molecular, dietary, and metabolic signaling mechanisms of human breast cancer growth by the nocturnal melatonin signal and the consequences of its disruption by light at night. Blask DE; Hill SM; Dauchy RT; Xiang S; Yuan L; Duplessis T; Mao L; Dauchy E; Sauer LA J Pineal Res; 2011 Oct; 51(3):259-69. PubMed ID: 21605163 [TBL] [Abstract][Full Text] [Related]
18. Effect of different spectral transmittances through tinted animal cages on circadian metabolism and physiology in Sprague-Dawley rats. Wren MA; Dauchy RT; Hanifin JP; Jablonski MR; Warfield B; Brainard GC; Blask DE; Hill SM; Ooms TG; Bohm RP J Am Assoc Lab Anim Sci; 2014 Jan; 53(1):44-51. PubMed ID: 24411779 [TBL] [Abstract][Full Text] [Related]
19. Growth and fatty acid metabolism of human breast cancer (MCF-7) xenografts in nude rats: impact of constant light-induced nocturnal melatonin suppression. Blask DE; Dauchy RT; Sauer LA; Krause JA; Brainard GC Breast Cancer Res Treat; 2003 Jun; 79(3):313-20. PubMed ID: 12846415 [TBL] [Abstract][Full Text] [Related]
20. Human cancer xenograft perfusion in situ in rats: a new perfusion system that minimizes delivery time and maintains normal tissue physiology and responsiveness to growth-inhibitory agents. Dauchy EM; Dauchy RT; Davidson LK; Lynch DT; Krause JA; Blue LM; Sauer LA; Blask DE J Am Assoc Lab Anim Sci; 2006 May; 45(3):38-44. PubMed ID: 16642969 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]