These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. [Fabrication of porous poly lactic acid-bone matrix gelatin composite bioactive material and its osteoinductive activity]. Zhang Y; Li B; Li J Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):135-9. PubMed ID: 17357459 [TBL] [Abstract][Full Text] [Related]
4. Structure and properties of PLLA/β-TCP nanocomposite scaffolds for bone tissue engineering. Lou T; Wang X; Song G; Gu Z; Yang Z J Mater Sci Mater Med; 2015 Jan; 26(1):5366. PubMed ID: 25578714 [TBL] [Abstract][Full Text] [Related]
5. Supercritical CO2 fluid-foaming of polymers to increase porosity: a method to improve the mechanical and biocompatibility characteristics for use as a potential alternative to allografts in impaction bone grafting? Tayton E; Purcell M; Aarvold A; Smith JO; Kalra S; Briscoe A; Shakesheff K; Howdle SM; Dunlop DG; Oreffo RO Acta Biomater; 2012 May; 8(5):1918-27. PubMed ID: 22307029 [TBL] [Abstract][Full Text] [Related]
6. [Preparation of porous polylactic-acid/ bone matrix gelatin composite as scaffold materials for bone-tissue engineering]. Zhang YM; Li BX; Li J; Ma HQ; Zhao YP; Yuan L Nan Fang Yi Ke Da Xue Xue Bao; 2006 Dec; 26(12):1745-8. PubMed ID: 17259111 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering. Lou T; Wang X; Song G; Gu Z; Yang Z Int J Biol Macromol; 2014 Aug; 69():464-70. PubMed ID: 24933519 [TBL] [Abstract][Full Text] [Related]
8. Preparation and characterization of homogeneous chitosan-polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties. Cai X; Tong H; Shen X; Chen W; Yan J; Hu J Acta Biomater; 2009 Sep; 5(7):2693-703. PubMed ID: 19359225 [TBL] [Abstract][Full Text] [Related]
9. The effect of processing variables on morphological and mechanical properties of supercritical CO2 foamed scaffolds for tissue engineering. White LJ; Hutter V; Tai H; Howdle SM; Shakesheff KM Acta Biomater; 2012 Jan; 8(1):61-71. PubMed ID: 21855663 [TBL] [Abstract][Full Text] [Related]
10. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique]. Lian Q; Zhuang P; Li C; Jin Z; Li D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010 [TBL] [Abstract][Full Text] [Related]
11. Phosphate functionalized and lactic acid containing graft copolymer: synthesis and evaluation as biomaterial for bone tissue engineering applications. Datta P; Chatterjee J; Dhara S J Biomater Sci Polym Ed; 2013; 24(6):696-713. PubMed ID: 23565910 [TBL] [Abstract][Full Text] [Related]
12. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Wei G; Ma PX Biomaterials; 2004 Aug; 25(19):4749-57. PubMed ID: 15120521 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Lu HH; El-Amin SF; Scott KD; Laurencin CT J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560 [TBL] [Abstract][Full Text] [Related]
14. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro. Akay G; Birch MA; Bokhari MA Biomaterials; 2004 Aug; 25(18):3991-4000. PubMed ID: 15046889 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering. Katti KS; Katti DR; Dash R Biomed Mater; 2008 Sep; 3(3):034122. PubMed ID: 18765898 [TBL] [Abstract][Full Text] [Related]
16. A method for solvent-free fabrication of porous polymer using solid-state foaming and ultrasound for tissue engineering applications. Wang X; Li W; Kumar V Biomaterials; 2006 Mar; 27(9):1924-9. PubMed ID: 16219346 [TBL] [Abstract][Full Text] [Related]
17. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Ramay HR; Zhang M Biomaterials; 2004 Sep; 25(21):5171-80. PubMed ID: 15109841 [TBL] [Abstract][Full Text] [Related]
18. Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering. Mistry AS; Cheng SH; Yeh T; Christenson E; Jansen JA; Mikos AG J Biomed Mater Res A; 2009 Apr; 89(1):68-79. PubMed ID: 18428800 [TBL] [Abstract][Full Text] [Related]
19. Development and cell response of a new biodegradable composite scaffold for guided bone regeneration. Navarro M; Ginebra MP; Planell JA; Zeppetelli S; Ambrosio L J Mater Sci Mater Med; 2004 Apr; 15(4):419-22. PubMed ID: 15332610 [TBL] [Abstract][Full Text] [Related]
20. The application of human bone marrow stromal cells and poly(dl-lactic acid) as a biological bone graft extender in impaction bone grafting. Bolland BJ; Kanczler JM; Ginty PJ; Howdle SM; Shakesheff KM; Dunlop DG; Oreffo RO Biomaterials; 2008 Aug; 29(22):3221-7. PubMed ID: 18456320 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]