BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 21640369)

  • 1. Root features related to plant growth and nutrient removal of 35 wetland plants.
    Lai WL; Wang SQ; Peng CL; Chen ZH
    Water Res; 2011 Jul; 45(13):3941-50. PubMed ID: 21640369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth and contaminant removal effect of several plants in constructed wetlands.
    Cheng XY; Liang MQ; Chen WY; Liu XC; Chen ZH
    J Integr Plant Biol; 2009 Mar; 51(3):325-35. PubMed ID: 19261076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactive effects of nitrogen and phosphorus loadings on nutrient removal from simulated wastewater using Schoenoplectus validus in wetland microcosms.
    Zhang Z; Rengel Z; Meney K
    Chemosphere; 2008 Aug; 72(11):1823-8. PubMed ID: 18561977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme and root activities in surface-flow constructed wetlands.
    Kong L; Wang YB; Zhao LN; Chen ZH
    Chemosphere; 2009 Jul; 76(5):601-8. PubMed ID: 19497608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of plant tillering and root volume on flow pattern and water purification of vertical down flow wetlands for domestic wastewater treatment.
    Wang S; Xu Z; Li H
    Water Sci Technol; 2009; 59(1):81-7. PubMed ID: 19151489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fine root morphological traits determine variation in root respiration of Quercus serrata.
    Makita N; Hirano Y; Dannoura M; Kominami Y; Mizoguchi T; Ishii H; Kanazawa Y
    Tree Physiol; 2009 Apr; 29(4):579-85. PubMed ID: 19203981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water permeability and reflection coefficient of the outer part of young rice roots are differently affected by closure of water channels (aquaporins) or blockage of apoplastic pores.
    Ranathunge K; Kotula L; Steudle E; Lafitte R
    J Exp Bot; 2004 Feb; 55(396):433-47. PubMed ID: 14739266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in plant biomass and nutrient removal over 3 years in a constructed wetland in Cairns, Australia.
    Greenway M; Woolley A
    Water Sci Technol; 2001; 44(11-12):303-10. PubMed ID: 11804111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutrient removal and plant biomass in a subsurface flow constructed wetland in Brisbane, Australia.
    Browning K; Greenway M
    Water Sci Technol; 2003; 48(5):183-9. PubMed ID: 14621163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution.
    Kotula L; Ranathunge K; Schreiber L; Steudle E
    J Exp Bot; 2009; 60(7):2155-67. PubMed ID: 19443620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptation of fine roots to annual fertilization and irrigation in a 13-year-old Pinus pinaster stand.
    Bakker MR; Jolicoeur E; Trichet P; Augusto L; Plassard C; Guinberteau J; Loustau D
    Tree Physiol; 2009 Feb; 29(2):229-38. PubMed ID: 19203948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The correlations between system treatment efficiencies and aboveground emergent macrophyte nutrient removal for the Hsin-Hai Bridge phase II constructed wetland.
    Ko CH; Lee TM; Chang FC; Liao SP
    Bioresour Technol; 2011 May; 102(9):5431-7. PubMed ID: 21106369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response of ammonium removal to growth and transpiration of Juncus effusus during the treatment of artificial sewage in laboratory-scale wetlands.
    Wiessner A; Kappelmeyer U; Kaestner M; Schultze-Nobre L; Kuschk P
    Water Res; 2013 Sep; 47(13):4265-73. PubMed ID: 23764577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vegetation changes and partitioning of selenium in 4-year-old constructed wetlands treating agricultural drainage.
    Lin ZQ; Terry N; Gao S; Mohamed S; Ye ZH
    Int J Phytoremediation; 2010 Mar; 12(3):255-67. PubMed ID: 20734620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of oxygen release by bulrush (Scirpus validus) roots in a constructed treatment wetland.
    Bezbaruah AN; Zhang TC
    Biotechnol Bioeng; 2005 Feb; 89(3):308-18. PubMed ID: 15744841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of biomass harvesting on phosphorus uptake by wetland plants.
    Kim SY; Geary PM
    Water Sci Technol; 2001; 44(11-12):61-7. PubMed ID: 11804158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lorentzian model of roots for understory yellow birch and sugar maple saplings.
    Cheng S
    J Theor Biol; 2007 May; 246(2):309-22. PubMed ID: 17289079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency of phenol biodegradation by planktonic Pseudomonas pseudoalcaligenes (a constructed wetland isolate) vs. root and gravel biofilm.
    Kurzbaum E; Kirzhner F; Sela S; Zimmels Y; Armon R
    Water Res; 2010 Sep; 44(17):5021-31. PubMed ID: 20705318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and physiology of olive pioneer and fibrous roots exposed to soil moisture deficits.
    Polverigiani S; McCormack ML; Mueller CW; Eissenstat DM
    Tree Physiol; 2011 Nov; 31(11):1228-37. PubMed ID: 22084020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes.
    Nielsen KL; Eshel A; Lynch JP
    J Exp Bot; 2001 Feb; 52(355):329-39. PubMed ID: 11283178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.