BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 21640532)

  • 1. Effects of synthetic cannabinoids on electroencephalogram power spectra in rats.
    Uchiyama N; Kikura-Hanajiri R; Matsumoto N; Huang ZL; Goda Y; Urade Y
    Forensic Sci Int; 2012 Feb; 215(1-3):179-83. PubMed ID: 21640532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Δ9-Tetrahydrocannabinol-like discriminative stimulus effects of compounds commonly found in K2/Spice.
    Gatch MB; Forster MJ
    Behav Pharmacol; 2014 Dec; 25(8):750-7. PubMed ID: 25325289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Δ(9)-Tetrahydrocannabinol-like effects of novel synthetic cannabinoids in mice and rats.
    Gatch MB; Forster MJ
    Psychopharmacology (Berl); 2016 May; 233(10):1901-10. PubMed ID: 26875756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic cannabinoid JWH-018 and psychosis: an explorative study.
    Every-Palmer S
    Drug Alcohol Depend; 2011 Sep; 117(2-3):152-7. PubMed ID: 21316162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-substitution of Δ9-tetrahydrocannabinol and JWH-018 in drug discrimination in rats.
    Wiley JL; Lefever TW; Cortes RA; Marusich JA
    Pharmacol Biochem Behav; 2014 Sep; 124():123-8. PubMed ID: 24887450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo effects of synthetic cannabinoids JWH-018 and JWH-073 and phytocannabinoid Δ9-THC in mice: inhalation versus intraperitoneal injection.
    Marshell R; Kearney-Ramos T; Brents LK; Hyatt WS; Tai S; Prather PL; Fantegrossi WE
    Pharmacol Biochem Behav; 2014 Sep; 124():40-7. PubMed ID: 24857780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the discriminative stimulus and response rate effects of
    Wiley JL; Lefever TW; Marusich JA; Craft RM
    Drug Alcohol Depend; 2017 Mar; 172():51-59. PubMed ID: 28130989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apparent inverse relationship between cannabinoid agonist efficacy and tolerance/cross-tolerance produced by Δ⁹-tetrahydrocannabinol treatment in rhesus monkeys.
    Hruba L; Ginsburg BC; McMahon LR
    J Pharmacol Exp Ther; 2012 Sep; 342(3):843-9. PubMed ID: 22718500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A vapourized Δ(9)-tetrahydrocannabinol (Δ(9)-THC) delivery system part II: comparison of behavioural effects of pulmonary versus parenteral cannabinoid exposure in rodents.
    Manwell LA; Ford B; Matthews BA; Heipel H; Mallet PE
    J Pharmacol Toxicol Methods; 2014; 70(1):112-9. PubMed ID: 24956154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cannabis: pharmacology and toxicology in animals and humans.
    Adams IB; Martin BR
    Addiction; 1996 Nov; 91(11):1585-614. PubMed ID: 8972919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical analysis of synthetic cannabinoids as designer drugs in herbal products.
    Uchiyama N; Kikura-Hanajiri R; Ogata J; Goda Y
    Forensic Sci Int; 2010 May; 198(1-3):31-8. PubMed ID: 20117892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Testing the pharmacological activity of some synthetic cannabinoids in mice (author's transl)].
    Ganz AJ; Waser PG
    Arzneimittelforschung; 1980; 30(3):471-7. PubMed ID: 7387758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Psychoactive cannabinoids reduce gastrointestinal propulsion and motility in rodents.
    Shook JE; Burks TF
    J Pharmacol Exp Ther; 1989 May; 249(2):444-9. PubMed ID: 2542532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review of detection frequency and type of synthetic cannabinoids in herbal compounds analyzed by Istanbul Narcotic Department of the Council of Forensic Medicine, Turkey.
    Gurdal F; Asirdizer M; Aker RG; Korkut S; Gocer Y; Kucukibrahimoglu EE; Ince CH
    J Forensic Leg Med; 2013 Aug; 20(6):667-72. PubMed ID: 23910858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavioural sensitization after repeated exposure to Delta 9-tetrahydrocannabinol and cross-sensitization with morphine.
    Cadoni C; Pisanu A; Solinas M; Acquas E; Di Chiara G
    Psychopharmacology (Berl); 2001 Nov; 158(3):259-66. PubMed ID: 11713615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of cannabinoid-induced antinociception after intracerebroventricular versus intrathecal administration to mice: possible mechanisms for interaction with morphine.
    Welch SP; Thomas C; Patrick GS
    J Pharmacol Exp Ther; 1995 Jan; 272(1):310-21. PubMed ID: 7815346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of brain sites mediating cannabinoid-induced antinociception in rats: evidence supporting periaqueductal gray involvement.
    Lichtman AH; Cook SA; Martin BR
    J Pharmacol Exp Ther; 1996 Feb; 276(2):585-93. PubMed ID: 8632325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of the cannabinoids on physical properties of brain membranes and phospholipid vesicles: fluorescence studies.
    Hillard CJ; Harris RA; Bloom AS
    J Pharmacol Exp Ther; 1985 Mar; 232(3):579-88. PubMed ID: 2983062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination Chemistry: Structure-Activity Relationships of Novel Psychoactive Cannabinoids.
    Wiley JL; Marusich JA; Thomas BF
    Curr Top Behav Neurosci; 2017; 32():231-248. PubMed ID: 27753007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a cannabinoid receptor in sea urchin sperm and its role in blockade of the acrosome reaction.
    Chang MC; Berkery D; Schuel R; Laychock SG; Zimmerman AM; Zimmerman S; Schuel H
    Mol Reprod Dev; 1993 Dec; 36(4):507-16. PubMed ID: 8305215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.