BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 21640717)

  • 1. Ectopic expression of Nkx2.5 suppresses the formation of the sinoatrial node in mice.
    Espinoza-Lewis RA; Liu H; Sun C; Chen C; Jiao K; Chen Y
    Dev Biol; 2011 Aug; 356(2):359-69. PubMed ID: 21640717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A common Shox2-Nkx2-5 antagonistic mechanism primes the pacemaker cell fate in the pulmonary vein myocardium and sinoatrial node.
    Ye W; Wang J; Song Y; Yu D; Sun C; Liu C; Chen F; Zhang Y; Wang F; Harvey RP; Schrader L; Martin JF; Chen Y
    Development; 2015 Jul; 142(14):2521-32. PubMed ID: 26138475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation of Shox2 is required for its function to control sinoatrial node formation.
    Liu H; Chen CH; Ye W; Espinoza-Lewis RA; Hu X; Zhang Y; Chen Y
    J Am Heart Assoc; 2014 May; 3(3):e000796. PubMed ID: 24847033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shox2 is essential for the differentiation of cardiac pacemaker cells by repressing Nkx2-5.
    Espinoza-Lewis RA; Yu L; He F; Liu H; Tang R; Shi J; Sun X; Martin JF; Wang D; Yang J; Chen Y
    Dev Biol; 2009 Mar; 327(2):376-85. PubMed ID: 19166829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeted mutation reveals essential functions of the homeodomain transcription factor Shox2 in sinoatrial and pacemaking development.
    Blaschke RJ; Hahurij ND; Kuijper S; Just S; Wisse LJ; Deissler K; Maxelon T; Anastassiadis K; Spitzer J; Hardt SE; Schöler H; Feitsma H; Rottbauer W; Blum M; Meijlink F; Rappold G; Gittenberger-de Groot AC
    Circulation; 2007 Apr; 115(14):1830-8. PubMed ID: 17372176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conjugated activation of myocardial-specific transcription of Gja5 by a pair of Nkx2-5-Shox2 co-responsive elements.
    Yang T; Huang Z; Li H; Wang L; Chen Y
    Dev Biol; 2020 Sep; 465(1):79-87. PubMed ID: 32687896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of Shox2 in SAN development and function.
    Liu H; Espinoza-Lewis RA; Chen C; Hu X; Zhang Y; Chen Y
    Pediatr Cardiol; 2012 Aug; 33(6):882-9. PubMed ID: 22307400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segregation of morphogenetic regulatory function of Shox2 from its cell fate guardian role in sinoatrial node development.
    Li H; Tang Q; Yang T; Wang Z; Li D; Wang L; Li L; Chen Y; Huang H; Zhang Y; Chen Y
    Commun Biol; 2024 Mar; 7(1):385. PubMed ID: 38553636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional redundancy between human SHOX and mouse Shox2 genes in the regulation of sinoatrial node formation and pacemaking function.
    Liu H; Chen CH; Espinoza-Lewis RA; Jiao Z; Sheu I; Hu X; Lin M; Zhang Y; Chen Y
    J Biol Chem; 2011 May; 286(19):17029-38. PubMed ID: 21454626
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Li H; Li D; Wang Y; Huang Z; Xu J; Yang T; Wang L; Tang Q; Cai CL; Huang H; Zhang Y; Chen Y
    Development; 2019 Jul; 146(14):. PubMed ID: 31320323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular pathway for the localized formation of the sinoatrial node.
    Mommersteeg MT; Hoogaars WM; Prall OW; de Gier-de Vries C; Wiese C; Clout DE; Papaioannou VE; Brown NA; Harvey RP; Moorman AF; Christoffels VM
    Circ Res; 2007 Feb; 100(3):354-62. PubMed ID: 17234970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Islet1 is a direct transcriptional target of the homeodomain transcription factor Shox2 and rescues the Shox2-mediated bradycardia.
    Hoffmann S; Berger IM; Glaser A; Bacon C; Li L; Gretz N; Steinbeisser H; Rottbauer W; Just S; Rappold G
    Basic Res Cardiol; 2013 Mar; 108(2):339. PubMed ID: 23455426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shox2: The Role in Differentiation and Development of Cardiac Conduction System.
    Hu W; Xin Y; Zhao Y; Hu J
    Tohoku J Exp Med; 2018 Mar; 244(3):177-186. PubMed ID: 29503396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Network-driven discovery yields new insight into Shox2-dependent cardiac rhythm control.
    Hoffmann S; Schmitteckert S; Raedecke K; Rheinert D; Diebold S; Roeth R; Weiss B; Granzow M; Niesler B; Griesbeck A; Eckstein V; Zimmermann WH; Just S; Rappold GA
    Biochim Biophys Acta Gene Regul Mech; 2021; 1864(4-5):194702. PubMed ID: 33706013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RHOA-ROCK signalling is necessary for lateralization and differentiation of the developing sinoatrial node.
    Vicente-Steijn R; Kelder TP; Tertoolen LG; Wisse LJ; Pijnappels DA; Poelmann RE; Schalij MJ; deRuiter MC; Gittenberger-de Groot AC; Jongbloed MRM
    Cardiovasc Res; 2017 Aug; 113(10):1186-1197. PubMed ID: 28899000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shox2 mediates Tbx5 activity by regulating Bmp4 in the pacemaker region of the developing heart.
    Puskaric S; Schmitteckert S; Mori AD; Glaser A; Schneider KU; Bruneau BG; Blaschke RJ; Steinbeisser H; Rappold G
    Hum Mol Genet; 2010 Dec; 19(23):4625-33. PubMed ID: 20858598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-Wide Analysis Identifies an Essential Human TBX3 Pacemaker Enhancer.
    van Eif VWW; Protze SI; Bosada FM; Yuan X; Sinha T; van Duijvenboden K; Ernault AC; Mohan RA; Wakker V; de Gier-de Vries C; Hooijkaas IB; Wilson MD; Verkerk AO; Bakkers J; Boukens BJ; Black BL; Scott IC; Christoffels VM
    Circ Res; 2020 Dec; 127(12):1522-1535. PubMed ID: 33040635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shox2 influences mesenchymal stem cell fate in a co-culture model in vitro.
    Feng Y; Yang P; Luo S; Zhang Z; Li H; Zhu P; Song Z
    Mol Med Rep; 2016 Jul; 14(1):637-42. PubMed ID: 27222368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATAC-Seq Reveals an
    Galang G; Mandla R; Ruan H; Jung C; Sinha T; Stone NR; Wu RS; Mannion BJ; Allu PKR; Chang K; Rammohan A; Shi MB; Pennacchio LA; Black BL; Vedantham V
    Circ Res; 2020 Dec; 127(12):1502-1518. PubMed ID: 33044128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nkx2.5-negative myocardium of the posterior heart field and its correlation with podoplanin expression in cells from the developing cardiac pacemaking and conduction system.
    Gittenberger-de Groot AC; Mahtab EA; Hahurij ND; Wisse LJ; Deruiter MC; Wijffels MC; Poelmann RE
    Anat Rec (Hoboken); 2007 Jan; 290(1):115-22. PubMed ID: 17441204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.