BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 21640867)

  • 1. Osteocalcin and N-telopeptides of type I collagen marker levels in gingival crevicular fluid during different stages of orthodontic tooth movement.
    Alfaqeeh SA; Anil S
    Am J Orthod Dentofacial Orthop; 2011 Jun; 139(6):e553-9. PubMed ID: 21640867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alkaline phosphatase activity in gingival crevicular fluid during canine retraction.
    Batra P; Kharbanda O; Duggal R; Singh N; Parkash H
    Orthod Craniofac Res; 2006 Feb; 9(1):44-51. PubMed ID: 16420274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteocalcin and cross-linked C-terminal telopeptide of type I collagen in gingival crevicular fluid during piezocision accelerated orthodontic tooth movement: A randomized split-mouth study.
    Yildirim HS; Ates M; Gun IO; Kuru B; Cakirer B; Kuru L
    Niger J Clin Pract; 2023 Apr; 26(4):470-477. PubMed ID: 37203112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of osteocalcin and pyridinium crosslinks of bone collagen as markers of bone turnover in gingival crevicular fluid during different stages of orthodontic treatment.
    Griffiths GS; Moulson AM; Petrie A; James IT
    J Clin Periodontol; 1998 Jun; 25(6):492-8. PubMed ID: 9667483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gingival crevicular fluid flow rate and alkaline phosphatase level as potential marker of active tooth movement.
    Alfaqeeh SA; Anil S
    Oral Health Dent Manag; 2014 Jun; 13(2):458-63. PubMed ID: 24984665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redefining orthodontic space closure: sequential repetitive loading of the periodontal ligament--a clinical study.
    Kalha AS; Kachiwala VA; Govardhan SN; McLaughlin RP; Khurshaid SZ
    World J Orthod; 2010; 11(3):221-9. PubMed ID: 20877730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mini-implant anchorage for en-masse retraction of maxillary anterior teeth: a clinical cephalometric study.
    Upadhyay M; Yadav S; Patil S
    Am J Orthod Dentofacial Orthop; 2008 Dec; 134(6):803-10. PubMed ID: 19061808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone marker levels in gingival crevicular fluid during orthodontic intrusive tooth movement: a preliminary study.
    Isik F; Sayinsu K; Arun T; Unlüçerçi Y
    J Contemp Dent Pract; 2005 May; 6(2):27-35. PubMed ID: 15915202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gingival crevicular fluid osteocalcin, N-terminal telopeptides, and calprotectin levels in cyclosporin A-induced gingival overgrowth.
    Becerik S; Gürkan A; Afacan B; Özgen Öztürk V; Atmaca H; Töz H; Atilla G; Emingil G
    J Periodontol; 2011 Oct; 82(10):1490-7. PubMed ID: 21342006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of pulsed electromagnetic fields on the acceleration of tooth movement.
    Showkatbakhsh R; Jamilian A; Showkatbakhsh M
    World J Orthod; 2010; 11(4):e52-6. PubMed ID: 21490989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Periodontal Changes Adjacent to Extraction Sites during Upper Canine Retraction.
    Al-Jundi A; Sabbagh BA; Baskaradoss JK
    J Contemp Dent Pract; 2017 Feb; 18(2):117-125. PubMed ID: 28174364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactate dehydrogenase activity in gingival crevicular fluid as a marker in orthodontic tooth movement.
    Alfaqeeh SA; Anil S
    Open Dent J; 2011; 5():105-9. PubMed ID: 21760863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interleukin-1beta levels, pain intensity, and tooth movement using two different magnitudes of continuous orthodontic force.
    Luppanapornlarp S; Kajii TS; Surarit R; Iida J
    Eur J Orthod; 2010 Oct; 32(5):596-601. PubMed ID: 20534713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of rate of canine retraction with conventional molar anchorage and titanium implant anchorage.
    Thiruvenkatachari B; Ammayappan P; Kandaswamy R
    Am J Orthod Dentofacial Orthop; 2008 Jul; 134(1):30-5. PubMed ID: 18617100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interdental osteotomies induce regional acceleratory phenomenon and accelerate orthodontic tooth movement.
    Teng GY; Liou EJ
    J Oral Maxillofac Surg; 2014 Jan; 72(1):19-29. PubMed ID: 24331564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The monitoring of gingival crevicular fluid volume during orthodontic treatment: a longitudinal randomized split-mouth study.
    Drummond S; Canavarro C; Perinetti G; Teles R; Capelli J
    Eur J Orthod; 2012 Feb; 34(1):109-13. PubMed ID: 21273285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Levels of t-PA and PAI-2 in gingival crevicular fluid during orthodontic tooth movement in adults.
    Hoshino-Itoh J; Kurokawa A; Yamaguchi M; Kasai K
    Aust Orthod J; 2005 May; 21(1):31-7. PubMed ID: 16433079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of corticotomy-facilitated orthodontics and piezocision in rapid canine retraction.
    Abbas NH; Sabet NE; Hassan IT
    Am J Orthod Dentofacial Orthop; 2016 Apr; 149(4):473-80. PubMed ID: 27021451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crevicular alkaline phosphatase activity during the application of two patterns of orthodontic forces.
    AlSwafeeri H; ElKenany W; Mowafy M; Helmy M
    J Orthod; 2015 Mar; 42(1):5-13. PubMed ID: 25808378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-level laser therapy increases interleukin-1β in gingival crevicular fluid and enhances the rate of orthodontic tooth movement.
    Varella AM; Revankar AV; Patil AK
    Am J Orthod Dentofacial Orthop; 2018 Oct; 154(4):535-544.e5. PubMed ID: 30268264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.