These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 2164108)

  • 1. Calcium-dependent volume reduction in regenerating ganglion cell axons in vitro.
    Edmonds BT; Koenig E
    J Neurosci Res; 1990 Jun; 26(2):168-80. PubMed ID: 2164108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmembrane cytoskeletal modulation in preterminal growing axons: I. Arrest of bulk and organelle transport in goldfish retinal ganglion cell axons regenerating in vitro by lectins binding to sialoglycoconjugates.
    Edmonds BT; Koenig E
    Cell Motil Cytoskeleton; 1990; 17(2):106-17. PubMed ID: 2175257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathfinding and target selection of goldfish retinal axons regenerating under TTX-induced impulse blockade.
    Hartlieb E; Stuermer CA
    J Comp Neurol; 1989 Jun; 284(1):148-68. PubMed ID: 2754029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Axonal pathfinding during the regeneration of the goldfish optic pathway.
    Bernhardt R
    J Comp Neurol; 1989 Jun; 284(1):119-34. PubMed ID: 2754027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Volume regulation in response to hypo-osmotic stress in goldfish retinal ganglion cell axons regenerating in vitro.
    Edmonds BT; Koenig E
    Brain Res; 1990 Jun; 520(1-2):159-65. PubMed ID: 2207628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP and calmodulin dependent actomyosin aggregates induced by cytochalasin D in goldfish retinal ganglion cell axons in vitro.
    Edmonds BT; Koenig E
    J Neurobiol; 1990 Jun; 21(4):555-66. PubMed ID: 2376730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local application of calcium-modulating agents to a crushed goldfish optic nerve modifies visual recovery.
    Meiri H; Grafstein B
    Exp Neurol; 1984 Feb; 83(2):403-13. PubMed ID: 6420179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinase requirement for retinal growth cone motility.
    Jian X; Hidaka H; Schmidt JT
    J Neurobiol; 1994 Oct; 25(10):1310-28. PubMed ID: 7815061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trajectories of regenerating retinal axons in the goldfish tectum: I. A comparison of normal and regenerated axons at late regeneration stages.
    Stuermer CA
    J Comp Neurol; 1988 Jan; 267(1):55-68. PubMed ID: 3343392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Staining of regenerated optic arbors in goldfish tectum: progressive changes in immature arbors and a comparison of mature regenerated arbors with normal arbors.
    Schmidt JT; Turcotte JC; Buzzard M; Tieman DG
    J Comp Neurol; 1988 Mar; 269(4):565-91. PubMed ID: 3372728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies of the early stages of optic axon regeneration in the goldfish.
    Lowenger E; Levine RL
    J Comp Neurol; 1988 May; 271(3):319-30. PubMed ID: 2454964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppressive actions of betaxolol on ionic currents in retinal ganglion cells may explain its neuroprotective effects.
    Hirooka K; Kelly ME; Baldridge WH; Barnes S
    Exp Eye Res; 2000 May; 70(5):611-21. PubMed ID: 10870519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for the stability of positional markers in the goldfish tectum.
    Busse U; Stuermer CA
    J Comp Neurol; 1989 Oct; 288(4):538-54. PubMed ID: 2808749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ability of axons to regenerate their growth cones depends on axonal type and age, and is regulated by calcium, cAMP and ERK.
    Chierzi S; Ratto GM; Verma P; Fawcett JW
    Eur J Neurosci; 2005 Apr; 21(8):2051-62. PubMed ID: 15869501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preferential loss of collaterals from goldfish retinal axons in the optic tract is delayed by tetrodotoxin.
    Hartlieb E; Stuermer CA
    Neurosci Lett; 1987 Aug; 79(1-2):1-5. PubMed ID: 3670716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage-activated ionic currents in goldfish pituitary cells.
    Price CJ; Goldberg JI; Chang JP
    Gen Comp Endocrinol; 1993 Oct; 92(1):16-30. PubMed ID: 7505247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trajectories of regenerating retinal axons in the goldfish tectum: II. Exploratory branches and growth cones on axons at early regeneration stages.
    Stuermer CA
    J Comp Neurol; 1988 Jan; 267(1):69-91. PubMed ID: 3343393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantitative analysis of frog optic nerve regeneration: is retrograde ganglion cell death or collateral axonal loss related to selective reinnervation?
    Stelzner DJ; Strauss JA
    J Comp Neurol; 1986 Mar; 245(1):83-106. PubMed ID: 3485663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathways of regenerated retinotectal axons in goldfish. I. Optic nerve, tract and tectal fascicle layer.
    Stuermer CA
    J Embryol Exp Morphol; 1986 Apr; 93():1-28. PubMed ID: 3734679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fish optic nerve oligodendrocytes support axonal regeneration of fish and mammalian retinal ganglion cells.
    Bastmeyer M; Bähr M; Stuermer CA
    Glia; 1993 May; 8(1):1-11. PubMed ID: 8509160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.