BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 21641111)

  • 1. Microencapsulation of phosphogypsum into a sulfur polymer matrix: physico-chemical and radiological characterization.
    López FA; Gázquez M; Alguacil FJ; Bolívar JP; García-Díaz I; López-Coto I
    J Hazard Mater; 2011 Aug; 192(1):234-45. PubMed ID: 21641111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiological, chemical and morphological characterizations of phosphate rock and phosphogypsum from phosphoric acid factories in SW Spain.
    Rentería-Villalobos M; Vioque I; Mantero J; Manjón G
    J Hazard Mater; 2010 Sep; 181(1-3):193-203. PubMed ID: 20537794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation on the application of steel slag-fly ash-phosphogypsum solidified material as road base material.
    Shen W; Zhou M; Ma W; Hu J; Cai Z
    J Hazard Mater; 2009 May; 164(1):99-104. PubMed ID: 18801617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of external gamma exposure and radon levels in a dwelling constructed with phosphogypsum plates.
    Máduar MF; Campos MP; Mazzilli BP; Villaverde FL
    J Hazard Mater; 2011 Jun; 190(1-3):1063-7. PubMed ID: 21458158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radioactive characterization of phosphogypsum from Imbituba, Brazil.
    Borges RC; Ribeiro FC; Lauria Dda C; Bernedo AV
    J Environ Radioact; 2013 Dec; 126():188-95. PubMed ID: 24051335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigations on the activity concentrations of 238U, 226RA, 228RA, 210PB and 40K in Jordan phosphogypsum and fertilizers.
    Al-Jundi J; Al-Ahmad N; Shehadeh H; Afaneh F; Maghrabi M; Gerstmann U; Höllriegl V; Oeh U
    Radiat Prot Dosimetry; 2008; 131(4):449-54. PubMed ID: 18701517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radon exhalation from phosphogypsum building boards: symmetry constraints, impermeable boundary conditions and numerical simulation of a test case.
    Rabi JA; da Silva NC
    J Environ Radioact; 2006; 86(2):164-75. PubMed ID: 16213634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and theoretical studies on physico-chemical parameters affecting the solubility of phosphogypsum.
    Papanicolaou F; Antoniou S; Pashalidis I
    J Environ Radioact; 2009 Oct; 100(10):854-7. PubMed ID: 19596498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occupational dosimetric assessment (inhalation pathway) from the application of phosphogypsum in agriculture in South West Spain.
    Abril JM; García-Tenorio R; Periáñez R; Enamorado SM; Andreu L; Delgado A
    J Environ Radioact; 2009 Jan; 100(1):29-34. PubMed ID: 19019506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Valorisation of waste ilmenite mud in the manufacture of sulphur polymer cement.
    Contreras M; Gázquez MJ; García-Díaz I; Alguacil FJ; López FA; Bolívar JP
    J Environ Manage; 2013 Oct; 128():625-30. PubMed ID: 23845955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Valorization of phosphogypsum as hydraulic binder.
    Kuryatnyk T; Angulski da Luz C; Ambroise J; Pera J
    J Hazard Mater; 2008 Dec; 160(2-3):681-7. PubMed ID: 18433998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of clinkerization temperature by using phosphogypsum.
    Kacimi L; Simon-Masseron A; Ghomari A; Derriche Z
    J Hazard Mater; 2006 Sep; 137(1):129-37. PubMed ID: 16533556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studying radon exhalation rates variability from phosphogypsum piles in the SW of Spain.
    López-Coto I; Mas JL; Vargas A; Bolívar JP
    J Hazard Mater; 2014 Sep; 280():464-71. PubMed ID: 25194815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exhalation of (222)Rn from phosphogypsum piles located at the Southwest of Spain.
    Dueñas C; Liger E; Cañete S; Pérez M; Bolívar JP
    J Environ Radioact; 2007; 95(2-3):63-74. PubMed ID: 17386964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental impact and management of phosphogypsum.
    Tayibi H; Choura M; López FA; Alguacil FJ; López-Delgado A
    J Environ Manage; 2009 Jun; 90(8):2377-86. PubMed ID: 19406560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The application of phosphogypsum in agriculture and the radiological impact.
    Papastefanou C; Stoulos S; Ioannidou A; Manolopoulou M
    J Environ Radioact; 2006; 89(2):188-98. PubMed ID: 16806608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leachable 226Ra in Philippine phosphogypsum and its implication in groundwater contamination in Isabel, Leyte, Philippines.
    Cañete SJ; Palad LJ; Enriquez EB; Garcia TY; Yulo-Nazarea T
    Environ Monit Assess; 2008 Jul; 142(1-3):337-44. PubMed ID: 17874311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treatment of phosphogypsum waste produced from phosphate ore processing.
    El-Didamony H; Gado HS; Awwad NS; Fawzy MM; Attallah MF
    J Hazard Mater; 2013 Jan; 244-245():596-602. PubMed ID: 23195600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An evaluation of radiation exposures in a tropical phosphogypsum disposal environment.
    Haridasan PP; Pillai PM; Tripathi RM; Puranik VD
    Radiat Prot Dosimetry; 2009 Jul; 135(3):211-5. PubMed ID: 19483206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extensive radioactive characterization of a phosphogypsum stack in SW Spain: 226Ra, 238U, 210Po concentrations and 222Rn exhalation rate.
    Abril JM; García-Tenorio R; Manjón G
    J Hazard Mater; 2009 May; 164(2-3):790-7. PubMed ID: 18829167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.