These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 21641206)

  • 1. Biofuels carbon footprints: Whole-systems optimisation for GHG emissions reduction.
    Zamboni A; Murphy RJ; Woods J; Bezzo F; Shah N
    Bioresour Technol; 2011 Aug; 102(16):7457-65. PubMed ID: 21641206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive approach to the design of ethanol supply chains including carbon trading effects.
    Giarola S; Shah N; Bezzo F
    Bioresour Technol; 2012 Mar; 107():175-85. PubMed ID: 22225607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels.
    McKechnie J; Colombo S; Chen J; Mabee W; MacLean HL
    Environ Sci Technol; 2011 Jan; 45(2):789-95. PubMed ID: 21142063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term bioethanol system and its implications on GHG emissions: a case study of Thailand.
    Silalertruksa T; Gheewala SH
    Environ Sci Technol; 2011 Jun; 45(11):4920-8. PubMed ID: 21528843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The potential of bio-methane as bio-fuel/bio-energy for reducing greenhouse gas emissions: a qualitative assessment for Europe in a life cycle perspective.
    Tilche A; Galatola M
    Water Sci Technol; 2008; 57(11):1683-92. PubMed ID: 18547917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncertainty analysis of life cycle greenhouse gas emissions from petroleum-based fuels and impacts on low carbon fuel policies.
    Venkatesh A; Jaramillo P; Griffin WM; Matthews HS
    Environ Sci Technol; 2011 Jan; 45(1):125-31. PubMed ID: 21043516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Policy implications of uncertainty in modeled life-cycle greenhouse gas emissions of biofuels.
    Mullins KA; Griffin WM; Matthews HS
    Environ Sci Technol; 2011 Jan; 45(1):132-8. PubMed ID: 21121672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Life cycle assessment of first-generation biofuels using a nitrogen crop model.
    Gallejones P; Pardo G; Aizpurua A; del Prado A
    Sci Total Environ; 2015 Feb; 505():1191-201. PubMed ID: 25461117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Life cycle assessment of biofuels: energy and greenhouse gas balances.
    Gnansounou E; Dauriat A; Villegas J; Panichelli L
    Bioresour Technol; 2009 Nov; 100(21):4919-30. PubMed ID: 19553106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life cycle assessment of bioenergy systems: state of the art and future challenges.
    Cherubini F; Strømman AH
    Bioresour Technol; 2011 Jan; 102(2):437-51. PubMed ID: 20832298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: Challenges and perspectives.
    Singh A; Pant D; Korres NE; Nizami AS; Prasad S; Murphy JD
    Bioresour Technol; 2010 Jul; 101(13):5003-12. PubMed ID: 20015644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indirect emissions from biofuels: how important?
    Melillo JM; Reilly JM; Kicklighter DW; Gurgel AC; Cronin TW; Paltsev S; Felzer BS; Wang X; Sokolov AP; Schlosser CA
    Science; 2009 Dec; 326(5958):1397-9. PubMed ID: 19933101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal design of ethanol supply chains considering carbon trading effects and multiple technologies for side-product exploitation.
    Ortiz-Gutiérrez RA; Giarola S; Bezzo F
    Environ Technol; 2013; 34(13-16):2189-99. PubMed ID: 24350473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eco-efficiency for greenhouse gas emissions mitigation of municipal solid waste management: a case study of Tianjin, China.
    Zhao W; Huppes G; van der Voet E
    Waste Manag; 2011 Jun; 31(6):1407-15. PubMed ID: 21316937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Greenhouse gas emission reduction and environmental quality improvement from implementation of aerobic waste treatment systems in swine farms.
    Vanotti MB; Szogi AA; Vives CA
    Waste Manag; 2008; 28(4):759-66. PubMed ID: 18060761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing GHG emissions, ecological footprint, and water linkage for different fuels.
    Chavez-Rodriguez MF; Nebra SA
    Environ Sci Technol; 2010 Dec; 44(24):9252-7. PubMed ID: 21105738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado.
    Mosier AR; Halvorson AD; Reule CA; Liu XJ
    J Environ Qual; 2006; 35(4):1584-98. PubMed ID: 16825479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emissions savings in the corn-ethanol life cycle from feeding coproducts to livestock.
    Bremer VR; Liska AJ; Klopfenstein TJ; Erickson GE; Yang HS; Walters DT; Cassman KG
    J Environ Qual; 2010; 39(2):472-82. PubMed ID: 20176820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beef production in balance: considerations for life cycle analyses.
    Place SE; Mitloehner FM
    Meat Sci; 2012 Nov; 92(3):179-81. PubMed ID: 22551868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global warming, population growth, and natural resources for food production.
    Pimentel D
    Soc Nat Resour; 1991; 4(4):347-63. PubMed ID: 12344889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.