BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 21641314)

  • 1. An electrostatic model with weak actin-myosin attachment resolves problems with the lattice stability of skeletal muscle.
    Smith DA; Stephenson DG
    Biophys J; 2011 Jun; 100(11):2688-97. PubMed ID: 21641314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatic forces or structural scaffolding: what stabilizes the lattice spacing of relaxed skinned muscle fibers?
    Smith DA
    J Theor Biol; 2014 Aug; 355():53-60. PubMed ID: 24703982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Filament lattice of frog striated muscle. Radial forces, lattice stability, and filament compression in the A-band of relaxed and rigor muscle.
    Millman BM; Irving TC
    Biophys J; 1988 Sep; 54(3):437-47. PubMed ID: 3264728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Length-dependence of actin-myosin interaction in skinned cardiac muscle fibers in rigor.
    Fuchs F; Wang YP
    J Mol Cell Cardiol; 1997 Dec; 29(12):3267-74. PubMed ID: 9441832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional stochastic model of actin-myosin binding in the sarcomere lattice.
    Mijailovich SM; Kayser-Herold O; Stojanovic B; Nedic D; Irving TC; Geeves MA
    J Gen Physiol; 2016 Dec; 148(6):459-488. PubMed ID: 27864330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is sarcomere lattice geometry optimal? Analysis of several potential virtual polygon cross-sectional patterns for actin and myosin myofilaments in muscle.
    Kepner GR
    Anat Rec (Hoboken); 2014 Sep; 297(9):1770-6. PubMed ID: 25125188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thick-filament strain and interfilament spacing in passive muscle: effect of titin-based passive tension.
    Irving T; Wu Y; Bekyarova T; Farman GP; Fukuda N; Granzier H
    Biophys J; 2011 Mar; 100(6):1499-508. PubMed ID: 21402032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rigor cross-bridges bind to two actin monomers in thin filaments of rabbit psoas muscle.
    Xiao M; Andreev OA; Borejdo J
    J Mol Biol; 1995 Apr; 248(2):294-307. PubMed ID: 7739041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Conformation of Myosin Heads in Relaxed Skeletal Muscle: Implications for Myosin-Based Regulation.
    Fusi L; Huang Z; Irving M
    Biophys J; 2015 Aug; 109(4):783-92. PubMed ID: 26287630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sarcomere lattice geometry influences cooperative myosin binding in muscle.
    Tanner BC; Daniel TL; Regnier M
    PLoS Comput Biol; 2007 Jul; 3(7):e115. PubMed ID: 17630823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myosin MgADP Release Rate Decreases as Sarcomere Length Increases in Skinned Rat Soleus Muscle Fibers.
    Fenwick AJ; Leighton SR; Tanner BCW
    Biophys J; 2016 Nov; 111(9):2011-2023. PubMed ID: 27806282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sarcomeric binding pattern of exogenously added intact caldesmon and its C-terminal 20-kDa fragment in skinned fibers of skeletal muscle.
    Frisbie SM; Reedy MC; Yu LC; Brenner B; Chalovich JM; Kraft T
    J Muscle Res Cell Motil; 1999 Apr; 20(3):291-303. PubMed ID: 10471992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Z/I and A-band lattice spacings in frog skeletal muscle: effects of contraction and osmolarity.
    Irving TC; Li Q; Williams BA; Millman BM
    J Muscle Res Cell Motil; 1998 Oct; 19(7):811-23. PubMed ID: 9836152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of inorganic phosphate on the force and number of myosin cross-bridges during the isometric contraction of permeabilized muscle fibers from rabbit psoas.
    Caremani M; Dantzig J; Goldman YE; Lombardi V; Linari M
    Biophys J; 2008 Dec; 95(12):5798-808. PubMed ID: 18835889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of force generated by individual myosin heads in skinned rabbit psoas muscle fibers at low ionic strength.
    Sugi H; Abe T; Kobayashi T; Chaen S; Ohnuki Y; Saeki Y; Sugiura S
    PLoS One; 2013; 8(5):e63658. PubMed ID: 23691080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-induced structural changes in the myosin thick filament of skinned rabbit psoas muscle.
    Malinchik S; Xu S; Yu LC
    Biophys J; 1997 Nov; 73(5):2304-12. PubMed ID: 9370427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of myofilament compliance on kinetics of force generation by myosin motors in muscle.
    Linari M; Piazzesi G; Lombardi V
    Biophys J; 2009 Jan; 96(2):583-92. PubMed ID: 19167306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myosin thick filaments from adult rabbit skeletal muscles.
    Morel J; D'hahan N; Bayol P; Cerqueira F; Rigault D; Merah Z; Gulik A; Guillo N; Hieu HD; Cabane V; Ferrari M; Figuera Picazo G
    Biochim Biophys Acta; 1999 Nov; 1472(3):413-30. PubMed ID: 10564756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The stiffness of skeletal muscle in isometric contraction and rigor: the fraction of myosin heads bound to actin.
    Linari M; Dobbie I; Reconditi M; Koubassova N; Irving M; Piazzesi G; Lombardi V
    Biophys J; 1998 May; 74(5):2459-73. PubMed ID: 9591672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.