These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 21641325)
1. Isolating toxic insulin amyloid reactive species that lack β-sheets and have wide pH stability. Heldt CL; Kurouski D; Sorci M; Grafeld E; Lednev IK; Belfort G Biophys J; 2011 Jun; 100(11):2792-800. PubMed ID: 21641325 [TBL] [Abstract][Full Text] [Related]
2. Characterization of Novel Insulin Fibrils That Show Strong Cytotoxicity Under Physiological pH. Yoshihara H; Saito J; Tanabe A; Amada T; Asakura T; Kitagawa K; Asada S J Pharm Sci; 2016 Apr; 105(4):1419-26. PubMed ID: 27019958 [TBL] [Abstract][Full Text] [Related]
3. Stepwise organization of the β-structure identifies key regions essential for the propagation and cytotoxicity of insulin amyloid fibrils. Chatani E; Imamura H; Yamamoto N; Kato M J Biol Chem; 2014 Apr; 289(15):10399-10410. PubMed ID: 24569992 [TBL] [Abstract][Full Text] [Related]
4. How do membranes initiate Alzheimer's Disease? Formation of toxic amyloid fibrils by the amyloid β-protein on ganglioside clusters. Matsuzaki K Acc Chem Res; 2014 Aug; 47(8):2397-404. PubMed ID: 25029558 [TBL] [Abstract][Full Text] [Related]
5. Time-dependent insulin oligomer reaction pathway prior to fibril formation: cooling and seeding. Sorci M; Grassucci RA; Hahn I; Frank J; Belfort G Proteins; 2009 Oct; 77(1):62-73. PubMed ID: 19408310 [TBL] [Abstract][Full Text] [Related]
6. Gallic acid, one of the components in many plant tissues, is a potential inhibitor for insulin amyloid fibril formation. Jayamani J; Shanmugam G Eur J Med Chem; 2014 Oct; 85():352-8. PubMed ID: 25105923 [TBL] [Abstract][Full Text] [Related]
7. Bovine insulin filaments induced by reducing disulfide bonds show a different morphology, secondary structure, and cell toxicity from intact insulin amyloid fibrils. Zako T; Sakono M; Hashimoto N; Ihara M; Maeda M Biophys J; 2009 Apr; 96(8):3331-40. PubMed ID: 19383476 [TBL] [Abstract][Full Text] [Related]
8. Perturbation of the stability of amyloid fibrils through alteration of electrostatic interactions. Shammas SL; Knowles TP; Baldwin AJ; Macphee CE; Welland ME; Dobson CM; Devlin GL Biophys J; 2011 Jun; 100(11):2783-91. PubMed ID: 21641324 [TBL] [Abstract][Full Text] [Related]
9. Disulfide bridges remain intact while native insulin converts into amyloid fibrils. Kurouski D; Washington J; Ozbil M; Prabhakar R; Shekhtman A; Lednev IK PLoS One; 2012; 7(6):e36989. PubMed ID: 22675475 [TBL] [Abstract][Full Text] [Related]
10. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure. Gosal WS; Clark AH; Ross-Murphy SB Biomacromolecules; 2004; 5(6):2408-19. PubMed ID: 15530058 [TBL] [Abstract][Full Text] [Related]
11. [Investigation of the kinetics of insulin amyloid fibrils formation]. Sulatskaia AI; Volova EA; Komissarchik IaIu; Snigirevskaia ES; Maskevich AA; Drobchenko EA; Kuznetsova IM; Turoverov KK Tsitologiia; 2013; 55(11):809-14. PubMed ID: 25509136 [TBL] [Abstract][Full Text] [Related]
12. pH-dependent disintegration of insulin amyloid fibrils monitored with atomic force microscopy and surface-enhanced Raman spectroscopy. Darussalam EY; Peterfi O; Deckert-Gaudig T; Roussille L; Deckert V Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jul; 256():119672. PubMed ID: 33852991 [TBL] [Abstract][Full Text] [Related]
13. Intermediates caught in the act: tracing insulin amyloid fibril formation in time by combined optical spectroscopy, light scattering, mass spectrometry and microscopy. Gladytz A; Lugovoy E; Charvat A; Häupl T; Siefermann KR; Abel B Phys Chem Chem Phys; 2015 Jan; 17(2):918-27. PubMed ID: 25408431 [TBL] [Abstract][Full Text] [Related]
14. Vibrational circular dichroism as a probe of fibrillogenesis: the origin of the anomalous intensity enhancement of amyloid-like fibrils. Measey TJ; Schweitzer-Stenner R J Am Chem Soc; 2011 Feb; 133(4):1066-76. PubMed ID: 21186804 [TBL] [Abstract][Full Text] [Related]
15. UV resonance Raman spectroscopy monitors polyglutamine backbone and side chain hydrogen bonding and fibrillization. Xiong K; Punihaole D; Asher SA Biochemistry; 2012 Jul; 51(29):5822-30. PubMed ID: 22746095 [TBL] [Abstract][Full Text] [Related]
16. Structural Organization of Insulin Fibrils Based on Polarized Raman Spectroscopy: Evaluation of Existing Models. Sereda V; Sawaya MR; Lednev IK J Am Chem Soc; 2015 Sep; 137(35):11312-20. PubMed ID: 26278047 [TBL] [Abstract][Full Text] [Related]
17. Molecular structures of amyloid and prion fibrils: consensus versus controversy. Tycko R; Wickner RB Acc Chem Res; 2013 Jul; 46(7):1487-96. PubMed ID: 23294335 [TBL] [Abstract][Full Text] [Related]
18. Exploring the structure and formation mechanism of amyloid fibrils by Raman spectroscopy: a review. Kurouski D; Van Duyne RP; Lednev IK Analyst; 2015 Aug; 140(15):4967-80. PubMed ID: 26042229 [TBL] [Abstract][Full Text] [Related]
19. Fibrillar oligomers nucleate the oligomerization of monomeric amyloid beta but do not seed fibril formation. Wu JW; Breydo L; Isas JM; Lee J; Kuznetsov YG; Langen R; Glabe C J Biol Chem; 2010 Feb; 285(9):6071-9. PubMed ID: 20018889 [TBL] [Abstract][Full Text] [Related]
20. Toxicity of non-abeta component of Alzheimer's disease amyloid, and N-terminal fragments thereof, correlates to formation of beta-sheet structure and fibrils. Bodles AM; Guthrie DJ; Harriott P; Campbell P; Irvine GB Eur J Biochem; 2000 Apr; 267(8):2186-94. PubMed ID: 10759841 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]