These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 21641334)
1. Investigating the cationic side chains of the antimicrobial peptide tritrpticin: hydrogen bonding properties govern its membrane-disruptive activities. Nguyen LT; de Boer L; Zaat SA; Vogel HJ Biochim Biophys Acta; 2011 Sep; 1808(9):2297-303. PubMed ID: 21641334 [TBL] [Abstract][Full Text] [Related]
2. Design of perfectly symmetric Trp-rich peptides with potent and broad-spectrum antimicrobial activities. Yang ST; Shin SY; Hahm KS; Kim JI Int J Antimicrob Agents; 2006 Apr; 27(4):325-30. PubMed ID: 16563706 [TBL] [Abstract][Full Text] [Related]
3. Structure-function analysis of tritrpticin analogs: potential relationships between antimicrobial activities, model membrane interactions, and their micelle-bound NMR structures. Schibli DJ; Nguyen LT; Kernaghan SD; Rekdal Ø; Vogel HJ Biophys J; 2006 Dec; 91(12):4413-26. PubMed ID: 16997878 [TBL] [Abstract][Full Text] [Related]
4. Selective cytotoxicity following Arg-to-Lys substitution in tritrpticin adopting a unique amphipathic turn structure. Yang ST; Shin SY; Lee CW; Kim YC; Hahm KS; Kim JI FEBS Lett; 2003 Apr; 540(1-3):229-33. PubMed ID: 12681513 [TBL] [Abstract][Full Text] [Related]
6. Effects of Pro --> peptoid residue substitution on cell selectivity and mechanism of antibacterial action of tritrpticin-amide antimicrobial peptide. Zhu WL; Lan H; Park Y; Yang ST; Kim JI; Park IS; You HJ; Lee JS; Park YS; Kim Y; Hahm KS; Shin SY Biochemistry; 2006 Oct; 45(43):13007-17. PubMed ID: 17059217 [TBL] [Abstract][Full Text] [Related]
7. Recombinant expression, antimicrobial activity and mechanism of action of tritrpticin analogs containing fluoro-tryptophan residues. Arias M; Hoffarth ER; Ishida H; Aramini JM; Vogel HJ Biochim Biophys Acta; 2016 May; 1858(5):1012-23. PubMed ID: 26724205 [TBL] [Abstract][Full Text] [Related]
8. Molecular simulations suggest how a branched antimicrobial peptide perturbs a bacterial membrane and enhances permeability. Li J; Liu S; Lakshminarayanan R; Bai Y; Pervushin K; Verma C; Beuerman RW Biochim Biophys Acta; 2013 Mar; 1828(3):1112-21. PubMed ID: 23274275 [TBL] [Abstract][Full Text] [Related]
9. Role of Cationic Side Chains in the Antimicrobial Activity of C18G. Kohn EM; Shirley DJ; Arotsky L; Picciano AM; Ridgway Z; Urban MW; Carone BR; Caputo GA Molecules; 2018 Feb; 23(2):. PubMed ID: 29401708 [TBL] [Abstract][Full Text] [Related]
10. Human neutrophil peptide 1 variants bearing arginine modified cationic side chains: effects on membrane partitioning. Bonucci A; Balducci E; Martinelli M; Pogni R Biophys Chem; 2014 Jun; 190-191():32-40. PubMed ID: 24820901 [TBL] [Abstract][Full Text] [Related]
11. Phosphate-mediated arginine insertion into lipid membranes and pore formation by a cationic membrane peptide from solid-state NMR. Tang M; Waring AJ; Hong M J Am Chem Soc; 2007 Sep; 129(37):11438-46. PubMed ID: 17705480 [TBL] [Abstract][Full Text] [Related]
12. Thermodynamics of the interactions of tryptophan-rich cathelicidin antimicrobial peptides with model and natural membranes. Andrushchenko VV; Aarabi MH; Nguyen LT; Prenner EJ; Vogel HJ Biochim Biophys Acta; 2008 Apr; 1778(4):1004-14. PubMed ID: 18222168 [TBL] [Abstract][Full Text] [Related]
13. Different modes in antibiotic action of tritrpticin analogs, cathelicidin-derived Trp-rich and Pro/Arg-rich peptides. Yang ST; Shin SY; Hahm KS; Kim JI Biochim Biophys Acta; 2006 Oct; 1758(10):1580-6. PubMed ID: 16859636 [TBL] [Abstract][Full Text] [Related]
14. Probing the disparate effects of arginine and lysine residues on antimicrobial peptide/bilayer association. Rice A; Wereszczynski J Biochim Biophys Acta Biomembr; 2017 Oct; 1859(10):1941-1950. PubMed ID: 28583830 [TBL] [Abstract][Full Text] [Related]
15. Oligotryptophan-tagged antimicrobial peptides and the role of the cationic sequence. Strömstedt AA; Pasupuleti M; Schmidtchen A; Malmsten M Biochim Biophys Acta; 2009 Sep; 1788(9):1916-23. PubMed ID: 19505433 [TBL] [Abstract][Full Text] [Related]
16. Improving the Activity of Trp-Rich Antimicrobial Peptides by Arg/Lys Substitutions and Changing the Length of Cationic Residues. Arias M; Piga KB; Hyndman ME; Vogel HJ Biomolecules; 2018 Apr; 8(2):. PubMed ID: 29671805 [TBL] [Abstract][Full Text] [Related]
17. Antimicrobial activity of arginine- and tryptophan-rich hexapeptides: the effects of aromatic clusters, D-amino acid substitution and cyclization. Wessolowski A; Bienert M; Dathe M J Pept Res; 2004 Oct; 64(4):159-69. PubMed ID: 15357671 [TBL] [Abstract][Full Text] [Related]
18. Comparing activity, toxicity and model membrane interactions of Jelleine-I and Trp/Arg analogs: analysis of peptide aggregation. Martins DB; Pacca CC; da Silva AMB; de Souza BM; de Almeida MTG; Palma MS; Arcisio-Miranda M; Dos Santos Cabrera MP Amino Acids; 2020 May; 52(5):725-741. PubMed ID: 32367434 [TBL] [Abstract][Full Text] [Related]
19. Cell specificity, anti-inflammatory activity, and plausible bactericidal mechanism of designed Trp-rich model antimicrobial peptides. Park KH; Nan YH; Park Y; Kim JI; Park IS; Hahm KS; Shin SY Biochim Biophys Acta; 2009 May; 1788(5):1193-203. PubMed ID: 19285481 [TBL] [Abstract][Full Text] [Related]
20. Effect of head group and curvature on binding of the antimicrobial peptide tritrpticin to lipid membranes. Bozelli JC; Sasahara ET; Pinto MR; Nakaie CR; Schreier S Chem Phys Lipids; 2012 May; 165(4):365-73. PubMed ID: 22209923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]