BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 2164156)

  • 21. Cyclic GMP and photoreceptor function.
    Lolley RN; Lee RH
    FASEB J; 1990 Sep; 4(12):3001-8. PubMed ID: 1697545
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activation of retinal rod cyclic GMP-phosphodiesterase by transducin: characterization of the complex formed by phosphodiesterase inhibitor and transducin alpha-subunit.
    Deterre P; Bigay J; Robert M; Pfister C; Kühn H; Chabre M
    Proteins; 1986 Oct; 1(2):188-93. PubMed ID: 2835763
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The transitory complex between photoexcited rhodopsin and transducin. Reciprocal interaction between the retinal site in rhodopsin and the nucleotide site in transducin.
    Bornancin F; Pfister C; Chabre M
    Eur J Biochem; 1989 Oct; 184(3):687-98. PubMed ID: 2509200
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reciprocal control of retinal rod cyclic GMP phosphodiesterase by its gamma subunit and transducin.
    Wensel TG; Stryer L
    Proteins; 1986 Sep; 1(1):90-9. PubMed ID: 2835761
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Slowed recovery of rod photoresponse in mice lacking the GTPase accelerating protein RGS9-1.
    Chen CK; Burns ME; He W; Wensel TG; Baylor DA; Simon MI
    Nature; 2000 Feb; 403(6769):557-60. PubMed ID: 10676965
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic analysis of the activation of transducin by photoexcited rhodopsin. Influence of the lateral diffusion of transducin and competition of guanosine diphosphate and guanosine triphosphate for the nucleotide site.
    Bruckert F; Chabre M; Vuong TM
    Biophys J; 1992 Sep; 63(3):616-29. PubMed ID: 1420903
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Downregulation of cGMP phosphodiesterase induced by expression of GTPase-deficient cone transducin in mouse rod photoreceptors.
    Raport CJ; Lem J; Makino C; Chen CK; Fitch CL; Hobson A; Baylor D; Simon MI; Hurley JB
    Invest Ophthalmol Vis Sci; 1994 Jun; 35(7):2932-47. PubMed ID: 8206711
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of retinal transducin with guanosine triphosphate analogues: specificity of the gamma-phosphate binding region.
    Yamanaka G; Eckstein F; Stryer L
    Biochemistry; 1986 Oct; 25(20):6149-53. PubMed ID: 3466646
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Inhibitory effect of pertussis toxin on the metabolism of guanine nucleotides in transducin from bovine outer rod segments].
    Rybin VO; Gureeva AA
    Biokhimiia; 1986 Jul; 51(7):1216-22. PubMed ID: 3089334
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reaction rate and collisional efficiency of the rhodopsin-transducin system in intact retinal rods.
    Kahlert M; Hofmann KP
    Biophys J; 1991 Feb; 59(2):375-86. PubMed ID: 1901231
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancement by phosphodiesterase subunits of the rate of GTP hydrolysis by transducin in bovine retinal rods. Essential role of the phosphodiesterase catalytic core.
    Pagès F; Deterre P; Pfister C
    J Biol Chem; 1993 Dec; 268(35):26358-64. PubMed ID: 8253760
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transducin inhibition of light-dependent rhodopsin phosphorylation: evidence for beta gamma subunit interaction with rhodopsin.
    Kelleher DJ; Johnson GL
    Mol Pharmacol; 1988 Oct; 34(4):452-60. PubMed ID: 3050446
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction of the retinal G-protein transducin with uracil nucleotides.
    Klinker JF; Seifert R
    Biochem Biophys Res Commun; 1999 Aug; 262(2):341-5. PubMed ID: 10462476
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Light and GTP dependence of transducin solubility in retinal rods. Further analysis by near infra-red light scattering.
    Bruckert F; Vuong TM; Chabre M
    Eur Biophys J; 1988; 16(4):207-18. PubMed ID: 3234315
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cyclic GMP cascade of vision.
    Stryer L
    Annu Rev Neurosci; 1986; 9():87-119. PubMed ID: 2423011
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical modification of transducin with iodoacetic acid: transducin-alpha carboxymethylated at Cys(347) allows transducin binding to Light-activated rhodopsin but prevents its release in the presence of GTP.
    Bubis J; Ortiz JO; Möller C
    Arch Biochem Biophys; 2001 Nov; 395(2):146-57. PubMed ID: 11697851
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Trigger and amplification mechanisms in visual phototransduction.
    Chabre M
    Annu Rev Biophys Biophys Chem; 1985; 14():331-60. PubMed ID: 2988577
    [No Abstract]   [Full Text] [Related]  

  • 38. Calcium regulates the rate of rhodopsin disactivation and the primary amplification step in visual transduction.
    Wagner R; Ryba N; Uhl R
    FEBS Lett; 1989 Jan; 242(2):249-54. PubMed ID: 2914607
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Retinal rod GTPase turnover rate increases with concentration: a key to the control of visual excitation?
    Dratz EA; Lewis JW; Schaechter LE; Parker KR; Kliger DS
    Biochem Biophys Res Commun; 1987 Jul; 146(2):379-86. PubMed ID: 3039975
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Purification and characterization of transducin from capybara Hydrochoerus hydrochaeris.
    Ortiz JO; Rodríguez-Lanetty M; Bubis J
    Comp Biochem Physiol B Biochem Mol Biol; 2008 Jan; 149(1):22-8. PubMed ID: 17855138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.