BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 21641590)

  • 1. Reconstruction of patient-specific femurs using X-ray and sparse CT images.
    Koh K; Kim YH; Kim K; Park WM
    Comput Biol Med; 2011 Jul; 41(7):421-6. PubMed ID: 21641590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 2D/3D correspondence building method for reconstruction of a patient-specific 3D bone surface model using point distribution models and calibrated X-ray images.
    Zheng G; Gollmer S; Schumann S; Dong X; Feilkas T; González Ballester MA
    Med Image Anal; 2009 Dec; 13(6):883-99. PubMed ID: 19162529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D femur model reconstruction from biplane X-ray images: a novel method based on Laplacian surface deformation.
    Karade V; Ravi B
    Int J Comput Assist Radiol Surg; 2015 Apr; 10(4):473-85. PubMed ID: 25037878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Femoral anatomy, computed tomography and computer-aided design of prosthetic implants.
    Adam F; Hammer DS; Pape D; Kohn D
    Arch Orthop Trauma Surg; 2002 Jun; 122(5):262-8. PubMed ID: 12070644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2D-3D shape reconstruction of the distal femur from stereo X-ray imaging using statistical shape models.
    Baka N; Kaptein BL; de Bruijne M; van Walsum T; Giphart JE; Niessen WJ; Lelieveldt BP
    Med Image Anal; 2011 Dec; 15(6):840-50. PubMed ID: 21600836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility study of custom hip stem design based on X-ray films.
    Wei HW; Chung MY; Huang VW; Cheng CK
    Biomed Mater Eng; 2004; 14(2):193-202. PubMed ID: 15156110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-dose three-dimensional reconstruction of the femur with unit free-form deformation.
    Zeng X; Wang C; Zhou H; Wei S; Chen X
    Med Phys; 2014 Aug; 41(8):081911. PubMed ID: 25086542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D reconstruction of a patient-specific surface model of the proximal femur from calibrated x-ray radiographs: a validation study.
    Zheng G; Schumann S
    Med Phys; 2009 Apr; 36(4):1155-66. PubMed ID: 19472621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Border-tracing algorithm implementation for the femoral geometry reconstruction.
    Testi D; Zannoni C; Cappello A; Viceconti M
    Comput Methods Programs Biomed; 2001 Jun; 65(3):175-82. PubMed ID: 11339979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated approach for reconstructing a surface model of the proximal femur from sparse input data and a multi-resolution point distribution model: an in vitro study.
    Zheng G; Schumann S; González Ballester MA
    Int J Comput Assist Radiol Surg; 2010 Jan; 5(1):99-107. PubMed ID: 20033508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trabecular bone analysis in CT and X-ray images of the proximal femur for the assessment of local bone quality.
    Fritscher K; Grunerbl A; Hanni M; Suhm N; Hengg C; Schubert R
    IEEE Trans Med Imaging; 2009 Oct; 28(10):1560-75. PubMed ID: 19520636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Fabrication of custom-made artificial semi-knee joint based on rapid prototyping technique: three-dimensional reconstruction of femoral condyle].
    Teng Y; Wang Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2004 Jul; 18(4):257-60. PubMed ID: 15323434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The use of open source software in graphic anatomic reconstructions and in biomechanic simulations].
    Ciobanu O
    Rev Med Chir Soc Med Nat Iasi; 2009; 113(3):927-33. PubMed ID: 20191857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing parametric solid modelling/reconfiguration, global shape modelling and free-form deformation for the generation of 3D digital models of femurs from X-ray images.
    Filippi S; Motyl B; Bandera C
    Comput Methods Biomech Biomed Engin; 2009 Feb; 12(1):101-8. PubMed ID: 18651260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patient-specific geometrical modeling of orthopedic structures with high efficiency and accuracy for finite element modeling and 3D printing.
    Huang H; Xiang C; Zeng C; Ouyang H; Wong KK; Huang W
    Australas Phys Eng Sci Med; 2015 Dec; 38(4):743-53. PubMed ID: 26577713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cost- and time-effective three-dimensional bone-shape reconstruction from X-ray images.
    Gunay M; Shim MB; Shimada K
    Int J Med Robot; 2007 Dec; 3(4):323-35. PubMed ID: 18200623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of sparse CT datasets for auto-generating accurate FE models of the femur and pelvis.
    Shim VB; Pitto RP; Streicher RM; Hunter PJ; Anderson IA
    J Biomech; 2007; 40(1):26-35. PubMed ID: 16427645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diagnostic radiograph based 3D bone reconstruction framework: application to the femur.
    Gamage P; Xie SQ; Delmas P; Xu WL
    Comput Med Imaging Graph; 2011 Sep; 35(6):427-37. PubMed ID: 21621977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer-aided methods for assessing lower limb deformities in orthopaedic surgery planning.
    Subburaj K; Ravi B; Agarwal M
    Comput Med Imaging Graph; 2010 Jun; 34(4):277-88. PubMed ID: 19963346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Personalized X-ray reconstruction of the proximal femur via intensity-based non-rigid 2D-3D registration.
    Zheng G
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 2):598-606. PubMed ID: 21995078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.