These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 2164161)

  • 1. Extraneuronal noradrenaline transport (uptake2) in a human cell line (Caki-1 cells).
    Schömig E; Schönfeld CL
    Naunyn Schmiedebergs Arch Pharmacol; 1990 May; 341(5):404-10. PubMed ID: 2164161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The extraneuronal transport mechanism for noradrenaline (uptake2) avidly transports 1-methyl-4-phenylpyridinium (MPP+).
    Russ H; Gliese M; Sonna J; Schömig E
    Naunyn Schmiedebergs Arch Pharmacol; 1992 Aug; 346(2):158-65. PubMed ID: 1448180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for uptake2-mediated O-methylation of noradrenaline in the human amnion FL cell-line.
    Marino V; de la Lande IS; Newlyn M; Parker DA
    Naunyn Schmiedebergs Arch Pharmacol; 1993 Apr; 347(4):371-8. PubMed ID: 8510765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human Caki-1 cells are the first model for extraneuronal transport of noradrenaline (uptake2) which is based on a clonal cell line.
    Schömig E; Babin-Ebell J; Schönfeld CL; Russ H; Trendelenburg U
    J Neural Transm Suppl; 1990; 32():437-40. PubMed ID: 2089108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extraneuronal uptake of noradrenaline in rabbit dental pulp: evidence of identity with uptake1.
    Marino V; de la Lande IS; Parker DA; Dally J; Wing S
    Naunyn Schmiedebergs Arch Pharmacol; 1992 Aug; 346(2):166-72. PubMed ID: 1448181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The force driving the extraneuronal transport mechanism for catecholamines (uptake2).
    Schömig E; Babin-Ebell J; Russ H; Trendelenburg U
    Naunyn Schmiedebergs Arch Pharmacol; 1992 Apr; 345(4):437-43. PubMed ID: 1620244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vascular uptake of catecholamines in perfused lungs of the rat occurs by the same process as Uptake1 in noradrenergic neurones.
    Bryan-Lluka LJ; Westwood NN; O'Donnell SR
    Naunyn Schmiedebergs Arch Pharmacol; 1992 Mar; 345(3):319-26. PubMed ID: 1535692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake of 3H-catecholamines by rat liver cells occurs mainly through a system which is distinct from uptake1 or uptake2.
    Martel F; Azevedo I; Osswald W
    Naunyn Schmiedebergs Arch Pharmacol; 1994 Aug; 350(2):130-5. PubMed ID: 7990969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of the extraneuronal monoamine transporter (uptake2) in human glioma cells.
    Streich S; Brüss M; Bönisch H
    Naunyn Schmiedebergs Arch Pharmacol; 1996 Feb; 353(3):328-33. PubMed ID: 8692289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyanine-related compounds: a novel class of potent inhibitors of extraneuronal noradrenaline transport.
    Russ H; Sonna J; Keppler K; Baunach S; Schömig E
    Naunyn Schmiedebergs Arch Pharmacol; 1993 Nov; 348(5):458-65. PubMed ID: 8114944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of catecholamine uptake2 in isolated cardiac myocytes.
    Obst OO; Rose H; Kammermeier H
    Mol Cell Biochem; 1996; 163-164():181-3. PubMed ID: 8974055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison between uptake2 and rOCT1: effects of catecholamines, metanephrines and corticosterone.
    Martel F; Ribeiro L; Calhau C; Azevedo I
    Naunyn Schmiedebergs Arch Pharmacol; 1999 Apr; 359(4):303-9. PubMed ID: 10344529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic constants for uptake and metabolism of 3H-(-)noradrenaline in rabbit aorta. Possible falsification of the constants by diffusion barriers within the vessel wall.
    Henseling M
    Naunyn Schmiedebergs Arch Pharmacol; 1983 Jun; 323(1):12-23. PubMed ID: 6877391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulation of 3H-(+/-)-noradrenaline by isolated rat liver cells.
    Acevedo C; Masana MI; Tchercansky D; Rubio MC
    Naunyn Schmiedebergs Arch Pharmacol; 1990 Jul; 342(1):40-4. PubMed ID: 2169596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraneuronal inactivation of noradrenaline in tissue culture.
    Schömig E; Babin-Ebell J; Gliese M; Russ H
    J Neural Transm Suppl; 1991; 34():43-9. PubMed ID: 1817163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The substrate specificity of uptake2 in the rat heart.
    Grohmann M; Trendelenburg U
    Naunyn Schmiedebergs Arch Pharmacol; 1984 Dec; 328(2):164-73. PubMed ID: 6527704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of extraneuronal uptake inhibitors on the positive chronotropic response to isoprenaline and on the accumulation of isoprenaline in perfused rat heart after inhibition of catechol-O-methyl transferase.
    Magaribuchi T; Hama T; Kurahashi K; Fujiwara M
    Naunyn Schmiedebergs Arch Pharmacol; 1987 Feb; 335(2):123-8. PubMed ID: 3561526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amezinium and debrisoquine are substrates of uptake1 and potent inhibitors of monoamine oxidase in perfused lungs of rats.
    Bryan-Lluka LJ; Seers H; Sharpe I
    Naunyn Schmiedebergs Arch Pharmacol; 1996 Apr; 353(5):536-44. PubMed ID: 8740147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uptake and metabolism of 3H-(+/-)-noradrenaline in the isolated perfused rat liver.
    Steinberg P; Acevedo C; Masana MI; Rubio MC
    Naunyn Schmiedebergs Arch Pharmacol; 1988 Apr; 337(4):392-6. PubMed ID: 3405314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The handling of five catecholamines by the extraneuronal O-methylating system of the rat heart.
    Grohmann M; Trendelenburg U
    Naunyn Schmiedebergs Arch Pharmacol; 1985 May; 329(3):264-70. PubMed ID: 4022137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.