BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 21641855)

  • 21. Hydrophobic tail length plays a pivotal role in amyloid beta (25-35) fibril-surfactant interactions.
    Bag S; Chaudhury S; Pramanik D; DasGupta S; Dasgupta S
    Proteins; 2016 Sep; 84(9):1213-23. PubMed ID: 27192507
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Excited-state intramolecular hydrogen atom transfer of curcumin in surfactant micelles.
    Adhikary R; Carlson PJ; Kee TW; Petrich JW
    J Phys Chem B; 2010 Mar; 114(8):2997-3004. PubMed ID: 20136104
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction of piroxicam with micelles: effect of hydrophobic chain length on structural switchover.
    Chakraborty H; Sarkar M
    Biophys Chem; 2005 Aug; 117(1):79-85. PubMed ID: 15908103
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of micelles on the spectral characteristics of the prototropic species of 2-(2'-aminophenyl)benzimidazole.
    Santra S; Dogra SK
    Spectrochim Acta A Mol Biomol Spectrosc; 2000 Apr; 56(5):915-25. PubMed ID: 10809067
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction of Fe(III) tetrakis(4-N-methylpyridinium)porphyrin with sodium dodecyl sulfate at submicellar concentrations.
    Yaffe O; Korin E; Bettelheim A
    Langmuir; 2008 Oct; 24(20):11514-7. PubMed ID: 18788822
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel porphyrin-incorporated hydrogels for photoactive intraocular lens biomaterials.
    Brady C; Bell SE; Parsons C; Gorman SP; Jones DS; McCoy CP
    J Phys Chem B; 2007 Jan; 111(3):527-34. PubMed ID: 17228910
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Difference in the effects of surfactants and albumin on the extent of deaggregation of purpurin 18, a model of hydrophobic photosensitizer.
    Mishra PP; Datta A
    Biophys Chem; 2006 Jun; 121(3):224-33. PubMed ID: 16503374
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Side-chain-controlled H- and J-aggregation of amphiphilic porphyrins in CTAB micelles.
    Guo L
    J Colloid Interface Sci; 2008 Jun; 322(1):281-6. PubMed ID: 18387624
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spectral properties of adrenaline in micellar environment.
    Polewski K
    Physiol Chem Phys Med NMR; 2003; 35(1):13-25. PubMed ID: 15139280
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Constrained photophysics of 3-acetyl-4-oxo-6,7-dihydro-12H indolo-[2,3-a] quinolizine in micellar environments: a spectrofluorometric study.
    Mallick A; Haldar B; Maiti S; Chattopadhyay N
    J Colloid Interface Sci; 2004 Oct; 278(1):215-23. PubMed ID: 15313657
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Localization of hydrophobic N-diazeniumdiolates in aqueous micellar solution.
    Mohr PC; Mohr A; Vila TP; Korth HG
    Langmuir; 2010 Aug; 26(15):12785-93. PubMed ID: 20614897
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spectroscopic Studies of water-soluble porphyrins with protein encapsulated in bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micelles: aggregation versus complexation.
    Andrade SM; Costa SM
    Chemistry; 2006 Jan; 12(4):1046-57. PubMed ID: 16250056
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-aggregation of synthesized novel bolaforms and their mixtures with sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) in aqueous medium.
    Maiti K; Mitra D; Mitra RN; Panda AK; Das PK; Rakshit AK; Moulik SP
    J Phys Chem B; 2010 Jun; 114(22):7499-508. PubMed ID: 20476731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photophysical properties of a series of free-base corroles.
    Ding T; Alemán EA; Modarelli DA; Ziegler CJ
    J Phys Chem A; 2005 Aug; 109(33):7411-7. PubMed ID: 16834109
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Absorption spectra of 7, 7, 8, 8-tetracyanoquinodimethane in micellar solutions.
    Jana AK; Mukhopadhyay SK; Bhowmik BB
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Nov; 57(13):2687-93. PubMed ID: 11765795
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photo processes on self-associated cationic porphyrins and plastocyanin complexes 1. Ligation of plastocyanin tyrosine 83 onto metalloporphyrins and electron-transfer fluorescence quenching.
    Anula HM; Myshkin E; Guliaev A; Luman C; Danilov EO; Castellano FN; Bullerjahn GS; Rodgers MA
    J Phys Chem A; 2006 Feb; 110(7):2545-59. PubMed ID: 16480316
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photophysical changes of pyranine induced by surfactants: evidence of premicellar aggregates.
    Barnadas-Rodríguez R; Estelrich J
    J Phys Chem B; 2009 Feb; 113(7):1972-82. PubMed ID: 19175300
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the localization of water-soluble porphyrins in micellar systems evaluated by static and time-resolved frequency-domain fluorescence techniques.
    Santiago PS; Neto Dde S; Gandini SC; Tabak M
    Colloids Surf B Biointerfaces; 2008 Sep; 65(2):247-56. PubMed ID: 18539441
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protic solvent effects on the photophysical properties of O=Ti(IV)TSPP: photoinduced electron transfer.
    Ryu SY; Yoon M; Jeoung SC; Song N
    Photochem Photobiol Sci; 2005 Jan; 4(1):54-60. PubMed ID: 15616692
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photophysical properties of core-modified expanded porphyrins: nature of aromaticity and enhancement of ring planarity.
    Yoon MC; Misra R; Yoon ZS; Kim KS; Lim JM; Chandrashekar TK; Kim D
    J Phys Chem B; 2008 Jun; 112(23):6900-5. PubMed ID: 18481890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.