These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 2164192)

  • 1. Chemical pathways of peptide degradation. I. Deamidation of adrenocorticotropic hormone.
    Bhatt NP; Patel K; Borchardt RT
    Pharm Res; 1990 Jun; 7(6):593-9. PubMed ID: 2164192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical pathways of peptide degradation. II. Kinetics of deamidation of an asparaginyl residue in a model hexapeptide.
    Patel K; Borchardt RT
    Pharm Res; 1990 Jul; 7(7):703-11. PubMed ID: 2395797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical pathways of peptide degradation. III. Effect of primary sequence on the pathways of deamidation of asparaginyl residues in hexapeptides.
    Patel K; Borchardt RT
    Pharm Res; 1990 Aug; 7(8):787-93. PubMed ID: 2235875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of amino acid sequence, buffers, and ionic strength on the rate and mechanism of deamidation of asparagine residues in small peptides.
    Tyler-Cross R; Schirch V
    J Biol Chem; 1991 Nov; 266(33):22549-56. PubMed ID: 1939272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the cyclic imide in alternate degradation pathways for asparagine-containing peptides and proteins.
    Dehart MP; Anderson BD
    J Pharm Sci; 2007 Oct; 96(10):2667-85. PubMed ID: 17518358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of stereoisomers and isoforms of a tryptic heptapeptide fragment of human growth hormone and analysis by reverse-phase HPLC and capillary electrophoresis.
    Vinther A; Holm A; Høeg-Jensen T; Jespersen AM; Klausen NK; Christensen T; Sørensen HH
    Eur J Biochem; 1996 Jan; 235(1-2):304-9. PubMed ID: 8631346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mildly acidic conditions eliminate deamidation artifact during proteolysis: digestion with endoprotease Glu-C at pH 4.5.
    Liu S; Moulton KR; Auclair JR; Zhou ZS
    Amino Acids; 2016 Apr; 48(4):1059-1067. PubMed ID: 26748652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of deamidated peptides with mixed-mode chromatography using phospholipid-functionalized monolithic stationary phases.
    Liu C; Bults P; Bischoff R; Crommen J; Wang Q; Jiang Z
    J Chromatogr A; 2019 Oct; 1603():417-421. PubMed ID: 31196587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of a histidine residue on the C-terminal side of an asparaginyl residue on the rate of deamidation using model pentapeptides.
    Goolcharran C; Stauffer LL; Cleland JL; Borchardt RT
    J Pharm Sci; 2000 Jun; 89(6):818-25. PubMed ID: 10824141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stoichiometric methylation of porcine adrenocorticotropin by protein carboxyl methyltransferase requires deamidation of asparagine 25. Evidence for methylation at the alpha-carboxyl group of atypical L-isoaspartyl residues.
    Aswad DW
    J Biol Chem; 1984 Sep; 259(17):10714-21. PubMed ID: 6088513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical pathways of peptide degradation. IV. Pathways, kinetics, and mechanism of degradation of an aspartyl residue in a model hexapeptide.
    Oliyai C; Borchardt RT
    Pharm Res; 1993 Jan; 10(1):95-102. PubMed ID: 8430066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deamidation of calmodulin at neutral and alkaline pH: quantitative relationships between ammonia loss and the susceptibility of calmodulin to modification by protein carboxyl methyltransferase.
    Johnson BA; Shirokawa JM; Aswad DW
    Arch Biochem Biophys; 1989 Jan; 268(1):276-86. PubMed ID: 2912379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of isoaspartate in peptides by electrospray tandem mass spectrometry.
    Lehmann WD; Schlosser A; Erben G; Pipkorn R; Bossemeyer D; Kinzel V
    Protein Sci; 2000 Nov; 9(11):2260-8. PubMed ID: 11152137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of asparagine 330 deamidation in an Fc-fragment of IgG1 using cation exchange chromatography and peptide mapping.
    Zhang YT; Hu J; Pace AL; Wong R; Wang YJ; Kao YH
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Aug; 965():65-71. PubMed ID: 24999246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deamidation via cyclic imide in asparaginyl peptides.
    Capasso S; Mazzarella L; Sica F; Zagari A
    Pept Res; 1989; 2(2):195-200. PubMed ID: 2520758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deamidation of asparagine residues in a recombinant serine hydroxymethyltransferase.
    di Salvo ML; Delle Fratte S; Maras B; Bossa F; Wright HT; Schirch V
    Arch Biochem Biophys; 1999 Dec; 372(2):271-9. PubMed ID: 10600164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational study on nonenzymatic peptide bond cleavage at asparagine and aspartic acid.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2008 Sep; 112(37):8752-61. PubMed ID: 18714962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic methyl esterification of a deamidated form of mouse epidermal growth factor.
    Galletti P; Iardino P; Ingrosso D; Manna C; Zappia V
    Int J Pept Protein Res; 1989 Jun; 33(6):397-402. PubMed ID: 2789201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of acidic N + 1 residues on asparagine deamidation rates in solution and in the solid state.
    Li B; Gorman EM; Moore KD; Williams T; Schowen RL; Topp EM; Borchardt RT
    J Pharm Sci; 2005 Mar; 94(3):666-75. PubMed ID: 15668945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isoaspartate in peptides and proteins: formation, significance, and analysis.
    Aswad DW; Paranandi MV; Schurter BT
    J Pharm Biomed Anal; 2000 Jan; 21(6):1129-36. PubMed ID: 10708396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.