These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 21642022)

  • 61. pH-responsive scaffolds generate a pro-healing response.
    You JO; Rafat M; Almeda D; Maldonado N; Guo P; Nabzdyk CS; Chun M; LoGerfo FW; Hutchinson JW; Pradhan-Nabzdyk LK; Auguste DT
    Biomaterials; 2015 Jul; 57():22-32. PubMed ID: 25956194
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Oxygen diffusion through natural extracellular matrices: implications for estimating "critical thickness" values in tendon tissue engineering.
    Androjna C; Gatica JE; Belovich JM; Derwin KA
    Tissue Eng Part A; 2008 Apr; 14(4):559-69. PubMed ID: 18377199
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Evaluation of the effective diffusivity of a freeform fabricated scaffold using computational simulation.
    Woo Jung J; Yi HG; Kang TY; Yong WJ; Jin S; Yun WS; Cho DW
    J Biomech Eng; 2013 Aug; 135(8):84501. PubMed ID: 23719774
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Numerical fluid-dynamic optimization of microchannel-provided porous scaffolds for the co-culture of adherent and non-adherent cells.
    Cantini M; Fiore GB; Redaelli A; Soncini M
    Tissue Eng Part A; 2009 Mar; 15(3):615-23. PubMed ID: 18767973
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cell proliferation and oxygen diffusion in a vascularising scaffold.
    Landman KA; Cai AQ
    Bull Math Biol; 2007 Oct; 69(7):2405-28. PubMed ID: 17554583
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Switching off angiogenic signalling: creating channelled constructs for adequate oxygen delivery in tissue engineered constructs.
    Cheema U; Alekseeva T; Abou-Neel EA; Brown RA
    Eur Cell Mater; 2010 Oct; 20():274-80; discussion 280-1. PubMed ID: 20927711
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Nonsteady state oxygen transport in engineered tissue: implications for design.
    Ehsan SM; George SC
    Tissue Eng Part A; 2013 Jun; 19(11-12):1433-42. PubMed ID: 23350630
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Optimizing Bifurcated Channels within an Anisotropic Scaffold for Engineering Vascularized Oriented Tissues.
    Fang Y; Ouyang L; Zhang T; Wang C; Lu B; Sun W
    Adv Healthc Mater; 2020 Dec; 9(24):e2000782. PubMed ID: 32790048
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Supply of nutrients to cells in engineered tissues.
    Rouwkema J; Koopman B; Blitterswijk C; Dhert W; Malda J
    Biotechnol Genet Eng Rev; 2010; 26():163-78. PubMed ID: 21415880
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Discrete model combined with mimetic microfluidic chips to study cell growth in porous scaffold under flow conditions.
    Chabanon M; Duval H; Francais O; Lepioufle B; Perrin E; Goyeau B; David B
    Comput Methods Biomech Biomed Engin; 2012; 15 Suppl 1():25-6. PubMed ID: 23009410
    [No Abstract]   [Full Text] [Related]  

  • 71. Oxygen and inulin transport measurements in a planar tissue-engineered bioartificial organ.
    Ding Z; Fournier RL
    Tissue Eng; 2002 Feb; 8(1):25-36. PubMed ID: 11886651
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Real-time quantitation of internal metabolic activity of three-dimensional engineered tissues using an oxygen microelectrode and optical coherence tomography.
    Kagawa Y; Haraguchi Y; Tsuneda S; Shimizu T
    J Biomed Mater Res B Appl Biomater; 2017 May; 105(4):855-864. PubMed ID: 26821598
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Travelling-Wave and Asymptotic Analysis of a Multiphase Moving Boundary Model for Engineered Tissue Growth.
    Jepson JM; Fadai NT; O'Dea RD
    Bull Math Biol; 2022 Jul; 84(8):87. PubMed ID: 35821278
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Engineered tumours: Roll-on scaffolds.
    DelNero P; Fischbach C
    Nat Mater; 2016 Feb; 15(2):138-9. PubMed ID: 26796732
    [No Abstract]   [Full Text] [Related]  

  • 75. Oxygen transport to tissue VII. Proceedings of the 8th International Symposium on Oxygen Transport to Tissue. August 26-30, 1984, Nijmegen, The Netherlands.
    Adv Exp Med Biol; 1985; 191():1-974. PubMed ID: 3832834
    [No Abstract]   [Full Text] [Related]  

  • 76. Perfusion systems that minimize vascular volume fraction in engineered tissues.
    Truslow JG; Tien J
    Biomicrofluidics; 2011 Jun; 5(2):22201. PubMed ID: 21799708
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Proposal for using a standardized terminology on oxygen transport to tissue.
    Zander R; Vaupel P
    Adv Exp Med Biol; 1985; 191():965-70. PubMed ID: 3832894
    [No Abstract]   [Full Text] [Related]  

  • 78. Transport properties of an engineered.
    Louis-Weber MS; Dravid VP; Todt VR; Zhang XF; Miller DJ; Balachandran U
    Phys Rev B Condens Matter; 1996 Dec; 54(22):16238-16245. PubMed ID: 9985703
    [No Abstract]   [Full Text] [Related]  

  • 79. Construction of Large-Volume Tissue Mimics with 3D Functional Vascular Networks.
    Kang TY; Hong JM; Jung JW; Kang HW; Cho DW
    PLoS One; 2016; 11(5):e0156529. PubMed ID: 27228079
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Oxygen diffusion in marine-derived tissue engineering scaffolds.
    Boccardi E; Belova IV; Murch GE; Boccaccini AR; Fiedler T
    J Mater Sci Mater Med; 2015 Jun; 26(6):200. PubMed ID: 26111951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.