These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 21642204)

  • 1. Old fronds serve as a vernal carbon source in the wintergreen fern Dryopteris intermedia (Aspleniaceae).
    Tessier JT; Bornn MP
    Am J Bot; 2007 Jan; 94(1):25-8. PubMed ID: 21642204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced winter snowfall damages the structure and function of wintergreen ferns.
    Tessier JT
    Am J Bot; 2014 Jun; 101(6):965-969. PubMed ID: 24844709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overwintering leaves of a forest-floor fern, Dryopteris crassirhizoma (Dryopteridaceae): a small contribution to the resource storage and photosynthetic carbon gain.
    Tani T; Kudo G
    Ann Bot; 2005 Jan; 95(2):263-70. PubMed ID: 15546923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uptake and distribution of selenium in different fern species.
    Srivastava M; Ma LQ; Cotruvo JA
    Int J Phytoremediation; 2005; 7(1):33-42. PubMed ID: 15943242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenology and photosynthetic activity in sterile and fertile sporophytes of Dryopteris filix-mas (L.) Schott.
    Bauer H; Gallmetzer C; Sato T
    Oecologia; 1991 Apr; 86(2):159-162. PubMed ID: 28313196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seasonal coordination of leaf hydraulics and gas exchange in a wintergreen fern.
    Prats KA; Brodersen CR
    AoB Plants; 2020 Dec; 12(6):plaa048. PubMed ID: 33324481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assimilation and translocation of nitrogen and carbon in Curcuma alismatifolia Gagnep.
    Khuankaew T; Ruamrungsri S; Ito S; Sato T; Ohtake N; Sueyoshi K; Ohyama T
    Plant Biol (Stuttg); 2010 May; 12(3):414-23. PubMed ID: 20522177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic speciation, and arsenic and phosphate distribution in arsenic hyperaccumulator Pteris vittata L. and non-hyperaccumulator Pteris ensiformis L.
    Singh N; Ma LQ
    Environ Pollut; 2006 May; 141(2):238-46. PubMed ID: 16257102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The economy of reproduction in dimorphic ferns.
    Britton MR; Watkins JE
    Ann Bot; 2016 Nov; 118(6):1139-1149. PubMed ID: 27590336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fern rhizomes as fodder in Norway.
    Alm T
    J Ethnobiol Ethnomed; 2016 Sep; 12(1):37. PubMed ID: 27600530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Lectins of Dryopteris Adans fern species].
    Basheka OV; Stetsenko NM; Pogorila NF
    Ukr Biokhim Zh (1999); 1999; 71(2):93-5. PubMed ID: 10609312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic uptake and accumulation in fern species growing at arsenic-contaminated sites of southern China: field surveys.
    Wang HB; Ye ZH; Shu WS; Li WC; Wong MH; Lan CY
    Int J Phytoremediation; 2006; 8(1):1-11. PubMed ID: 16615304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of arsenic accumulation in 18 fern species and four Pteris vittata accessions.
    Srivastava M; Santos J; Srivastava P; Ma LQ
    Bioresour Technol; 2010 Apr; 101(8):2691-9. PubMed ID: 20044253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic hyperaccumulator Pteris vittata L.
    Tu C; Ma LQ
    Environ Pollut; 2005 May; 135(2):333-40. PubMed ID: 15734593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The extent of arsenic and of metal uptake by aboveground tissues of Pteris vittata and Cyperus involucratus growing in copper- and cobalt-rich tailings of the Zambian copperbelt.
    Kříbek B; Mihaljevič M; Sracek O; Knésl I; Ettler V; Nyambe I
    Arch Environ Contam Toxicol; 2011 Aug; 61(2):228-42. PubMed ID: 20949352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allocation of 14C assimilated in late spring to tissue and biochemical stem components of cork oak (Quercus suber L.) over the seasons.
    Aguado PL; Curt MD; Pereira H; Fernández J
    Tree Physiol; 2012 Mar; 32(3):313-25. PubMed ID: 22418688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L.).
    Bondada BR; Tu S; Ma LQ
    Sci Total Environ; 2004 Oct; 332(1-3):61-70. PubMed ID: 15336891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model of dynamics of leaves and nitrogen in a plant canopy: an integration of canopy photosynthesis, leaf life span, and nitrogen use efficiency.
    Hikosaka K
    Am Nat; 2003 Aug; 162(2):149-64. PubMed ID: 12858260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Higher growth temperatures decreased net carbon assimilation and biomass accumulation of northern red oak seedlings near the southern limit of the species range.
    Wertin TM; McGuire MA; Teskey RO
    Tree Physiol; 2011 Dec; 31(12):1277-88. PubMed ID: 21937670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term structural canopy changes sustain net photosynthesis per ground area in high arctic Vaccinium uliginosum exposed to changes in near-ambient UV-B levels.
    Boesgaard KS; Albert KR; Ro-Poulsen H; Michelsen A; Mikkelsen TN; Schmidt NM
    Physiol Plant; 2012 Aug; 145(4):540-50. PubMed ID: 22211955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.