These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 21642366)
1. Plant surfaces with cuticular folds are slippery for beetles. Prüm B; Seidel R; Bohn HF; Speck T J R Soc Interface; 2012 Jan; 9(66):127-35. PubMed ID: 21642366 [TBL] [Abstract][Full Text] [Related]
2. Plant surfaces with cuticular folds and their replicas: influence of microstructuring and surface chemistry on the attachment of a leaf beetle. Prüm B; Florian Bohn H; Seidel R; Rubach S; Speck T Acta Biomater; 2013 May; 9(5):6360-8. PubMed ID: 23391991 [TBL] [Abstract][Full Text] [Related]
3. Impact of cell shape in hierarchically structured plant surfaces on the attachment of male Colorado potato beetles (Leptinotarsa decemlineata). Prüm B; Seidel R; Bohn HF; Speck T Beilstein J Nanotechnol; 2012; 3():57-64. PubMed ID: 22428097 [TBL] [Abstract][Full Text] [Related]
4. Insect attachment on waxy plant surfaces: the effect of pad contamination by different waxes. Gorb EV; Gorb SN Beilstein J Nanotechnol; 2024; 15():385-395. PubMed ID: 38633766 [TBL] [Abstract][Full Text] [Related]
5. Epicuticular wax on leaf cuticles does not establish the transpiration barrier, which is essentially formed by intracuticular wax. Zeisler-Diehl V; Müller Y; Schreiber L J Plant Physiol; 2018 Aug; 227():66-74. PubMed ID: 29653782 [TBL] [Abstract][Full Text] [Related]
6. Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier. Zeisler V; Schreiber L Planta; 2016 Jan; 243(1):65-81. PubMed ID: 26341347 [TBL] [Abstract][Full Text] [Related]
7. Slippery pores: anti-adhesive effect of nanoporous substrates on the beetle attachment system. Gorb EV; Hosoda N; Miksch C; Gorb SN J R Soc Interface; 2010 Nov; 7(52):1571-9. PubMed ID: 20427333 [TBL] [Abstract][Full Text] [Related]
8. Composite structure of the crystalline epicuticular wax layer of the slippery zone in the pitchers of the carnivorous plant Nepenthes alata and its effect on insect attachment. Gorb E; Haas K; Henrich A; Enders S; Barbakadze N; Gorb S J Exp Biol; 2005 Dec; 208(Pt 24):4651-62. PubMed ID: 16326946 [TBL] [Abstract][Full Text] [Related]
9. Polarity in cuticular ridge development and insect attachment on leaf surfaces of Surapaneni VA; Aust T; Speck T; Thielen M Beilstein J Nanotechnol; 2021; 12():1326-1338. PubMed ID: 34934607 [TBL] [Abstract][Full Text] [Related]
10. Spatio-temporal development of cuticular ridges on leaf surfaces of Surapaneni VA; Bold G; Speck T; Thielen M R Soc Open Sci; 2020 Nov; 7(11):201319. PubMed ID: 33391807 [TBL] [Abstract][Full Text] [Related]
11. Host finding and oviposition behavior in a chrysomelid specialist--the importance of host plant surface waxes. Müller C; Hilker M J Chem Ecol; 2001 May; 27(5):985-94. PubMed ID: 11471950 [TBL] [Abstract][Full Text] [Related]
12. The hydrophobic coatings of plant surfaces: epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Koch K; Ensikat HJ Micron; 2008 Oct; 39(7):759-72. PubMed ID: 18187332 [TBL] [Abstract][Full Text] [Related]
13. Leaf Cuticular Transpiration Barrier Organization in Tea Tree Under Normal Growth Conditions. Chen M; Zhang Y; Kong X; Du Z; Zhou H; Yu Z; Qin J; Chen C Front Plant Sci; 2021; 12():655799. PubMed ID: 34276719 [TBL] [Abstract][Full Text] [Related]
14. Ontogenetic variation in chemical and physical characteristics of adaxial apple leaf surfaces. Bringe K; Schumacher CF; Schmitz-Eiberger M; Steiner U; Oerke EC Phytochemistry; 2006 Jan; 67(2):161-70. PubMed ID: 16321411 [TBL] [Abstract][Full Text] [Related]
15. Insect attachment on crystalline bioinspired wax surfaces formed by alkanes of varying chain lengths. Gorb E; Böhm S; Jacky N; Maier LP; Dening K; Pechook S; Pokroy B; Gorb S Beilstein J Nanotechnol; 2014; 5():1031-41. PubMed ID: 25161838 [TBL] [Abstract][Full Text] [Related]
16. Attachment of Galerucella nymphaeae (Coleoptera, Chrysomelidae) to surfaces with different surface energy. Grohmann C; Blankenstein A; Koops S; Gorb SN J Exp Biol; 2014 Dec; 217(Pt 23):4213-20. PubMed ID: 25324345 [TBL] [Abstract][Full Text] [Related]
17. Performance and adaptive value of tarsal morphology in rove beetles of the genus Stenus (Coleoptera, Staphylinidae). Betz O J Exp Biol; 2002 Apr; 205(Pt 8):1097-113. PubMed ID: 11919269 [TBL] [Abstract][Full Text] [Related]
18. Maize glossy6 is involved in cuticular wax deposition and drought tolerance. Li L; Du Y; He C; Dietrich CR; Li J; Ma X; Wang R; Liu Q; Liu S; Wang G; Schnable PS; Zheng J J Exp Bot; 2019 Jun; 70(12):3089-3099. PubMed ID: 30919902 [TBL] [Abstract][Full Text] [Related]
19. Slippery surfaces of pitcher plants: Nepenthes wax crystals minimize insect attachment via microscopic surface roughness. Scholz I; Bückins M; Dolge L; Erlinghagen T; Weth A; Hischen F; Mayer J; Hoffmann S; Riederer M; Riedel M; Baumgartner W J Exp Biol; 2010 Apr; 213(Pt 7):1115-25. PubMed ID: 20228348 [TBL] [Abstract][Full Text] [Related]
20. What do microbes encounter at the plant surface? Chemical composition of pea leaf cuticular waxes. Gniwotta F; Vogg G; Gartmann V; Carver TL; Riederer M; Jetter R Plant Physiol; 2005 Sep; 139(1):519-30. PubMed ID: 16113231 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]