BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 21642623)

  • 1. Image defocus and altered retinal gene expression in chick: clues to the pathogenesis of ametropia.
    Stone RA; McGlinn AM; Baldwin DA; Tobias JW; Iuvone PM; Khurana TS
    Invest Ophthalmol Vis Sci; 2011 Jul; 52(8):5765-77. PubMed ID: 21642623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microarray analysis of retinal gene expression in chicks during imposed myopic defocus.
    Schippert R; Schaeffel F; Feldkaemper MP
    Mol Vis; 2008 Aug; 14():1589-99. PubMed ID: 18769560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Form-deprivation myopia in chick induces limited changes in retinal gene expression.
    McGlinn AM; Baldwin DA; Tobias JW; Budak MT; Khurana TS; Stone RA
    Invest Ophthalmol Vis Sci; 2007 Aug; 48(8):3430-6. PubMed ID: 17652709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual Image Quality Impacts Circadian Rhythm-Related Gene Expression in Retina and in Choroid: A Potential Mechanism for Ametropias.
    Stone RA; Wei W; Sarfare S; McGeehan B; Engelhart KC; Khurana TS; Maguire MG; Iuvone PM; Nickla DL
    Invest Ophthalmol Vis Sci; 2020 May; 61(5):13. PubMed ID: 32396635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The retina/RPE proteome in chick myopia and hyperopia models: Commonalities with inherited and age-related ocular pathologies.
    Riddell N; Faou P; Murphy M; Giummarra L; Downs RA; Rajapaksha H; Crewther SG
    Mol Vis; 2017; 23():872-888. PubMed ID: 29259393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered gene expression in tree shrew retina and retinal pigment epithelium produced by short periods of minus-lens wear.
    He L; Frost MR; Siegwart JT; Norton TT
    Exp Eye Res; 2018 Mar; 168():77-88. PubMed ID: 29329973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene expression signatures in tree shrew sclera during recovery from minus-lens wear and during plus-lens wear.
    Guo L; Frost MR; Siegwart JT; Norton TT
    Mol Vis; 2019; 25():311-328. PubMed ID: 31341380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal changes of novel transcripts in the chicken retina following imposed defocus.
    Ohngemach S; Buck C; Simon P; Schaeffel F; Feldkaemper M
    Mol Vis; 2004 Dec; 10():1019-27. PubMed ID: 15635295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene expression within the amacrine cell layer of chicks after myopic and hyperopic defocus.
    Ashby RS; Feldkaemper MP
    Invest Ophthalmol Vis Sci; 2010 Jul; 51(7):3726-35. PubMed ID: 20207967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microarray analysis of choroid/RPE gene expression in marmoset eyes undergoing changes in ocular growth and refraction.
    Shelton L; Troilo D; Lerner MR; Gusev Y; Brackett DJ; Rada JS
    Mol Vis; 2008 Aug; 14():1465-79. PubMed ID: 18698376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of imposed defocus of opposite sign on temporal gene expression patterns of BMP4 and BMP7 in chick RPE.
    Zhang Y; Liu Y; Ho C; Wildsoet CF
    Exp Eye Res; 2013 Apr; 109():98-106. PubMed ID: 23428741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in retinal and choroidal gene expression during development of refractive errors in chicks.
    Feldkaemper MP; Wang HY; Schaeffel F
    Invest Ophthalmol Vis Sci; 2000 Jun; 41(7):1623-8. PubMed ID: 10845578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacology of myopia and potential role for intrinsic retinal circadian rhythms.
    Stone RA; Pardue MT; Iuvone PM; Khurana TS
    Exp Eye Res; 2013 Sep; 114():35-47. PubMed ID: 23313151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bidirectional, optical sign-dependent regulation of BMP2 gene expression in chick retinal pigment epithelium.
    Zhang Y; Liu Y; Wildsoet CF
    Invest Ophthalmol Vis Sci; 2012 Sep; 53(10):6072-80. PubMed ID: 22879416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cone signals for spectacle-lens compensation: differential responses to short and long wavelengths.
    Rucker FJ; Wallman J
    Vision Res; 2008 Sep; 48(19):1980-91. PubMed ID: 18585403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imposed retinal image size changes--do they provide a cue to the sign of lens-induced defocus in chick?
    Schmid KL; Strang NC; Wildsoet CF
    Optom Vis Sci; 1999 May; 76(5):320-5. PubMed ID: 10375249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a potential role of glucagon during eye growth regulation in chicks.
    Feldkaemper MP; Schaeffel F
    Vis Neurosci; 2002; 19(6):755-66. PubMed ID: 12688670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The albino chick as a model for studying ocular developmental anomalies, including refractive errors, associated with albinism.
    Rymer J; Choh V; Bharadwaj S; Padmanabhan V; Modilevsky L; Jovanovich E; Yeh B; Zhang Z; Guan H; Payne W; Wildsoet CF
    Exp Eye Res; 2007 Oct; 85(4):431-42. PubMed ID: 17651735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of positive and negative lens treatment on retinal and choroidal glucagon and glucagon receptor mRNA levels in the chicken.
    Buck C; Schaeffel F; Simon P; Feldkaemper M
    Invest Ophthalmol Vis Sci; 2004 Feb; 45(2):402-9. PubMed ID: 14744878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short term optical defocus perturbs normal developmental shifts in retina/RPE protein abundance.
    Riddell N; Faou P; Crewther SG
    BMC Dev Biol; 2018 Aug; 18(1):18. PubMed ID: 30157773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.