BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 21642880)

  • 1. Functional asymmetry in primary auditory cortex for processing musical sounds: temporal pattern analysis of fMRI time series.
    Izumi S; Itoh K; Matsuzawa H; Takahashi S; Kwee IL; Nakada T
    Neuroreport; 2011 Jul; 22(10):470-3. PubMed ID: 21642880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Detection of central auditory compensation in unilateral deafness with functional magnetic resonance tomography].
    Tschopp K; Schillinger C; Schmid N; Rausch M; Bilecen D; Scheffler K
    Laryngorhinootologie; 2000 Dec; 79(12):753-7. PubMed ID: 11199459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional specialization of the human auditory cortex in processing phonetic and musical sounds: A magnetoencephalographic (MEG) study.
    Tervaniemi M; Kujala A; Alho K; Virtanen J; Ilmoniemi RJ; Näätänen R
    Neuroimage; 1999 Mar; 9(3):330-6. PubMed ID: 10075902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Representations of Pitch and Timbre Variation in Human Auditory Cortex.
    Allen EJ; Burton PC; Olman CA; Oxenham AJ
    J Neurosci; 2017 Feb; 37(5):1284-1293. PubMed ID: 28025255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional specializations for music processing in the human newborn brain.
    Perani D; Saccuman MC; Scifo P; Spada D; Andreolli G; Rovelli R; Baldoli C; Koelsch S
    Proc Natl Acad Sci U S A; 2010 Mar; 107(10):4758-63. PubMed ID: 20176953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the Columnar Stability of Acoustic Processing in the Human Auditory Cortex.
    Moerel M; De Martino F; Uğurbil K; Formisano E; Yacoub E
    J Neurosci; 2018 Sep; 38(36):7822-7832. PubMed ID: 30185539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple bilaterally asymmetric cortical sources account for the auditory N1m component.
    Zouridakis G; Simos PG; Papanicolaou AC
    Brain Topogr; 1998; 10(3):183-9. PubMed ID: 9562539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Receptive amusia: evidence for cross-hemispheric neural networks underlying music processing strategies.
    Schuppert M; Münte TF; Wieringa BM; Altenmüller E
    Brain; 2000 Mar; 123 Pt 3():546-59. PubMed ID: 10686177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sound-level-dependent representation of frequency modulations in human auditory cortex: a low-noise fMRI study.
    Brechmann A; Baumgart F; Scheich H
    J Neurophysiol; 2002 Jan; 87(1):423-33. PubMed ID: 11784760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The human amygdala disconnecting from auditory cortex preferentially discriminates musical sound of uncertain emotion by altering hemispheric weighting.
    Manno FAM; Lau C; Fernandez-Ruiz J; Manno SH; Cheng SH; Barrios FA
    Sci Rep; 2019 Oct; 9(1):14787. PubMed ID: 31615998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Music-selective neural populations arise without musical training.
    Boebinger D; Norman-Haignere SV; McDermott JH; Kanwisher N
    J Neurophysiol; 2021 Jun; 125(6):2237-2263. PubMed ID: 33596723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of different cortical areas in the temporal lobes to music processing.
    Liégeois-Chauvel C; Peretz I; Babaï M; Laguitton V; Chauvel P
    Brain; 1998 Oct; 121 ( Pt 10)():1853-67. PubMed ID: 9798742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cortical analysis of speech-specific temporal structure revealed by responses to sound quilts.
    Overath T; McDermott JH; Zarate JM; Poeppel D
    Nat Neurosci; 2015 Jun; 18(6):903-11. PubMed ID: 25984889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Audition of laughing and crying leads to right amygdala activation in a low-noise fMRI setting.
    Sander K; Brechmann A; Scheich H
    Brain Res Brain Res Protoc; 2003 May; 11(2):81-91. PubMed ID: 12738003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A common cortical substrate activated by horizontal and vertical sound movement in the human brain.
    Pavani F; Macaluso E; Warren JD; Driver J; Griffiths TD
    Curr Biol; 2002 Sep; 12(18):1584-90. PubMed ID: 12372250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of human auditory cortex in retrieval experiments: an fMRI study.
    Gaschler-Markefski B; Baumgart F; Tempelmann C; Woldorff MG; Scheich H
    Neural Plast; 1998; 6(3):69-75. PubMed ID: 9920684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Invariance to background noise as a signature of non-primary auditory cortex.
    Kell AJE; McDermott JH
    Nat Commun; 2019 Sep; 10(1):3958. PubMed ID: 31477711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct higher-order representations of natural sounds in human and ferret auditory cortex.
    Landemard A; Bimbard C; Demené C; Shamma S; Norman-Haignere S; Boubenec Y
    Elife; 2021 Nov; 10():. PubMed ID: 34792467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional anatomy of musical perception in musicians.
    Ohnishi T; Matsuda H; Asada T; Aruga M; Hirakata M; Nishikawa M; Katoh A; Imabayashi E
    Cereb Cortex; 2001 Aug; 11(8):754-60. PubMed ID: 11459765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Auditory cortical response to monaural stimulation as detected by functional magnetic resonance imaging].
    Suzuki M; Ogawa T; Kitano H; Yazawa Y; Kitajima K
    Nihon Jibiinkoka Gakkai Kaiho; 2000 Aug; 103(8):879-84. PubMed ID: 11019582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.