These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 21644118)

  • 1. Modified dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for the determination of clenbuterol in swine urine.
    Geng Y; Zhang M; Yuan W; Xiang B
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2011 Aug; 28(8):1006-12. PubMed ID: 21644118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dispersive liquid-liquid microextraction combined with semi-automated in-syringe back extraction as a new approach for the sample preparation of ionizable organic compounds prior to liquid chromatography.
    Melwanki MB; Fuh MR
    J Chromatogr A; 2008 Jul; 1198-1199():1-6. PubMed ID: 18513730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of clenbuterol in porcine tissues using solid-phase extraction combined with ultrasound-assisted dispersive liquid-liquid microextraction and HPLC-UV detection.
    Liu B; Yan H; Qiao F; Geng Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Jan; 879(1):90-4. PubMed ID: 21131242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersive liquid-liquid microextraction followed by reversed phase HPLC for the determination of decabrominated diphenyl ether in natural water.
    Li Y; Hu J; Liu X; Fu L; Zhang X; Wang X
    J Sep Sci; 2008 Jul; 31(13):2371-6. PubMed ID: 18646259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous determination of tetrahydropalmatine and tetrahydroberberine in rat urine using dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography.
    Zhang M; Le J; Wen J; Chai Y; Fan G; Hong Z
    J Sep Sci; 2011 Nov; 34(22):3279-86. PubMed ID: 22028314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of dispersive liquid-liquid microextraction combined with high-performance liquid chromatography for the determination of methomyl in natural waters.
    Wei G; Li Y; Wang X
    J Sep Sci; 2007 Dec; 30(18):3262-7. PubMed ID: 18008284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of dispersive liquid-liquid microextraction and dispersive micro-solid-phase extraction for the determination of quinolones in swine muscle by high-performance liquid chromatography with diode-array detection.
    Tsai WH; Chuang HY; Chen HH; Huang JJ; Chen HC; Cheng SH; Huang TC
    Anal Chim Acta; 2009 Dec; 656(1-2):56-62. PubMed ID: 19932815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dispersive liquid-liquid microextraction followed by reversed phase-high performance liquid chromatography for the determination of polybrominated diphenyl ethers at trace levels in landfill leachate and environmental water samples.
    Li Y; Wei G; Hu J; Liu X; Zhao X; Wang X
    Anal Chim Acta; 2008 May; 615(1):96-103. PubMed ID: 18440368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dispersive liquid-liquid microextraction based on solidification of floating organic droplet followed by high-performance liquid chromatography with ultraviolet detection and liquid chromatography-tandem mass spectrometry for the determination of triclosan and 2,4-dichlorophenol in water samples.
    Zheng C; Zhao J; Bao P; Gao J; He J
    J Chromatogr A; 2011 Jun; 1218(25):3830-6. PubMed ID: 21601213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersive solid-phase extraction followed by dispersive liquid-liquid microextraction for the determination of some sulfonylurea herbicides in soil by high-performance liquid chromatography.
    Wu Q; Wang C; Liu Z; Wu C; Zeng X; Wen J; Wang Z
    J Chromatogr A; 2009 Jul; 1216(29):5504-10. PubMed ID: 19523645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective indirect enrichment and determination of nitrite ion in water and biological samples using ionic liquid-dispersive liquid-liquid microextraction combined with high-performance liquid chromatography.
    He L; Zhang K; Wang C; Luo X; Zhang S
    J Chromatogr A; 2011 Jun; 1218(23):3595-600. PubMed ID: 21530978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extraction of clenbuterol from urine using hydroxylated poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith microextraction followed by high-performance liquid chromatography determination.
    Wen Y; Wang Y; Feng YQ
    J Sep Sci; 2007 Nov; 30(17):2874-80. PubMed ID: 17924584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyphenation of coupled-column liquid chromatography and thermospray tandem mass spectrometry for the rapid determination of beta 2-agonist residues in bovine urine using direct large-volume sample injection. Set-up of single-residue methods for clenbuterol and salbutamol.
    Hogendoorn EA; van Zoonen P; Polettini A; Montagna M
    J Mass Spectrom; 1996 Apr; 31(4):418-26. PubMed ID: 8799286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of dispersive liquid-liquid microextraction and improvement of detection limit of methyl tert-butyl ether in water with the aid of chemometrics.
    Karimi M; Sereshti H; Samadi S; Parastar H
    J Chromatogr A; 2010 Nov; 1217(45):7017-23. PubMed ID: 20888566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of beta-agonists and beta-blockers in urine using hollow fibre-protected liquid-phase microextraction with in situ derivatization followed by gas chromatography/mass spectrometry.
    Liu W; Zhang L; Wei Z; Chen S; Chen G
    J Chromatogr A; 2009 Jul; 1216(28):5340-6. PubMed ID: 19501827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of dispersive liquid-liquid microextraction and high-performance liquid chromatography for the determination of three phthalate esters in water samples.
    Liang P; Xu J; Li Q
    Anal Chim Acta; 2008 Feb; 609(1):53-8. PubMed ID: 18243873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dispersive liquid-liquid microextraction followed by high-performance liquid chromatography as an efficient and sensitive technique for simultaneous determination of chloramphenicol and thiamphenicol in honey.
    Chen H; Chen H; Ying J; Huang J; Liao L
    Anal Chim Acta; 2009 Jan; 632(1):80-5. PubMed ID: 19100885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of sildenafil, vardenafil and aildenafil in human plasma by dispersive liquid-liquid microextraction-back extraction based on ionic liquid and high performance liquid chromatography-ultraviolet detection.
    Xiao C; Tang M; Li J; Yin CR; Xiang G; Xu L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Jul; 931():111-6. PubMed ID: 23774245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dispersive liquid-liquid microextraction combined with high-performance liquid chromatography-UV detection as a very simple, rapid and sensitive method for the determination of bisphenol A in water samples.
    Rezaee M; Yamini Y; Shariati S; Esrafili A; Shamsipur M
    J Chromatogr A; 2009 Feb; 1216(9):1511-4. PubMed ID: 19167003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined solid-phase microextraction and high-performance liquid chromatography with ultroviolet detection for simultaneous analysis of clenbuterol, salbutamol and ractopamine in pig samples.
    Du W; Zhang S; Fu Q; Zhao G; Chang C
    Biomed Chromatogr; 2013 Dec; 27(12):1775-81. PubMed ID: 23843113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.