These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 21644539)

  • 1. Low packing density self-assembled superstructure of octahedral Pt3Ni nanocrystals.
    Zhang J; Luo Z; Quan Z; Wang Y; Kumbhar A; Smilgies DM; Fang J
    Nano Lett; 2011 Jul; 11(7):2912-8. PubMed ID: 21644539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Ligand Packing Frustration in Body-Centered Cubic (bcc) Superlattices of Colloidal Nanocrystals.
    Goodfellow BW; Yu Y; Bosoy CA; Smilgies DM; Korgel BA
    J Phys Chem Lett; 2015 Jul; 6(13):2406-12. PubMed ID: 26266710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible Kirkwood-Alder transition observed in Pt3Cu2 nanoctahedron assemblies under controlled solvent annealing/drying conditions.
    Zhang J; Luo Z; Martens B; Quan Z; Kumbhar A; Porter N; Wang Y; Smilgies DM; Fang J
    J Am Chem Soc; 2012 Aug; 134(34):14043-9. PubMed ID: 22839450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colloidal synthesis of NixPt1-x nanoparticles with tuneable composition and size.
    Ahrenstorf K; Albrecht O; Heller H; Kornowski A; Görlitz D; Weller H
    Small; 2007 Feb; 3(2):271-4. PubMed ID: 17199251
    [No Abstract]   [Full Text] [Related]  

  • 5. Shape and composition-controlled platinum alloy nanocrystals using carbon monoxide as reducing agent.
    Wu J; Gross A; Yang H
    Nano Lett; 2011 Feb; 11(2):798-802. PubMed ID: 21204581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competing Interactions between Various Entropic Forces toward Assembly of Pt3Ni Octahedra into a Body-Centered Cubic Superlattice.
    Li R; Zhang J; Tan R; Gerdes F; Luo Z; Xu H; Hollingsworth JA; Klinke C; Chen O; Wang Z
    Nano Lett; 2016 Apr; 16(4):2792-9. PubMed ID: 26977777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and oxygen reduction activity of shape-controlled Pt(3)Ni nanopolyhedra.
    Zhang J; Yang H; Fang J; Zou S
    Nano Lett; 2010 Feb; 10(2):638-44. PubMed ID: 20078068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rh-Doped Pt-Ni Octahedral Nanoparticles: Understanding the Correlation between Elemental Distribution, Oxygen Reduction Reaction, and Shape Stability.
    Beermann V; Gocyla M; Willinger E; Rudi S; Heggen M; Dunin-Borkowski RE; Willinger MG; Strasser P
    Nano Lett; 2016 Mar; 16(3):1719-25. PubMed ID: 26854940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ study of atomic structure transformations of Pt-Ni nanoparticle catalysts during electrochemical potential cycling.
    Tuaev X; Rudi S; Petkov V; Hoell A; Strasser P
    ACS Nano; 2013 Jul; 7(7):5666-74. PubMed ID: 23805992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions.
    Wu Y; Cai S; Wang D; He W; Li Y
    J Am Chem Soc; 2012 May; 134(21):8975-81. PubMed ID: 22519877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling the size and composition of nanosized Pt-Ni octahedra to optimize their catalytic activities toward the oxygen reduction reaction.
    Choi SI; Xie S; Shao M; Lu N; Guerrero S; Odell JH; Park J; Wang J; Kim MJ; Xia Y
    ChemSusChem; 2014 May; 7(5):1476-83. PubMed ID: 24644079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interface-induced nucleation, orientational alignment and symmetry transformations in nanocube superlattices.
    Choi JJ; Bian K; Baumgardner WJ; Smilgies DM; Hanrath T
    Nano Lett; 2012 Sep; 12(9):4791-8. PubMed ID: 22888985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multilayered Si/Ni nanosprings and their magnetic properties.
    He Y; Fu J; Zhang Y; Zhao Y; Zhang L; Xia A; Cai J
    Small; 2007 Jan; 3(1):153-60. PubMed ID: 17294487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile synthesis of Pt multipods nanocrystals.
    Liang HP; Hu JS; Cao AM; Mu YY; Wan LJ
    J Nanosci Nanotechnol; 2006 Jul; 6(7):2031-6. PubMed ID: 17025120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic imaging of oxide-supported metallic nanocrystals.
    Feng Z; Kazimirov A; Bedzyk MJ
    ACS Nano; 2011 Dec; 5(12):9755-60. PubMed ID: 22032686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembled simple hexagonal AB(2) binary nanocrystal superlattices: SEM, GISAXS, and defects.
    Smith DK; Goodfellow B; Smilgies DM; Korgel BA
    J Am Chem Soc; 2009 Mar; 131(9):3281-90. PubMed ID: 19216526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coalescence and sintering of Pt nanoparticles: in situ observation by aberration-corrected HAADF STEM.
    Asoro MA; Kovar D; Shao-Horn Y; Allard LF; Ferreira PJ
    Nanotechnology; 2010 Jan; 21(2):025701. PubMed ID: 19955618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent-mediated self-assembly of nanocube superlattices.
    Quan Z; Xu H; Wang C; Wen X; Wang Y; Zhu J; Li R; Sheehan CJ; Wang Z; Smilgies DM; Luo Z; Fang J
    J Am Chem Soc; 2014 Jan; 136(4):1352-9. PubMed ID: 24397381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coexistence of hcp and bct Phases during In Situ Superlattice Assembly from Faceted Colloidal Nanocrystals.
    Lokteva I; Koof M; Walther M; Grübel G; Lehmkühler F
    J Phys Chem Lett; 2019 Oct; 10(20):6331-6338. PubMed ID: 31578064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capturing the crystalline phase of two-dimensional nanocrystal superlattices in action.
    Jiang Z; Lin XM; Sprung M; Narayanan S; Wang J
    Nano Lett; 2010 Mar; 10(3):799-803. PubMed ID: 20121062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.