BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 21644612)

  • 1. Comparisons of polymer/gas partition coefficients calculated from responses of thickness shear mode and surface acoustic wave vapor sensors.
    Grate JW; Kaganove SN; Bhethanabotla VR
    Anal Chem; 1998 Jan; 70(1):199-203. PubMed ID: 21644612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The fractional free volume of the sorbed vapor in modeling the viscoelastic contribution to polymer-coated surface acoustic wave vapor sensor responses.
    Grate JW; Zellers ET
    Anal Chem; 2000 Jul; 72(13):2861-8. PubMed ID: 10905319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of liquid-phase chemical detection using guided shear horizontal-surface acoustic wave sensors.
    Li Z; Jones Y; Hossenlopp J; Cernosek R; Josse F
    Anal Chem; 2005 Jul; 77(14):4595-603. PubMed ID: 16013878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of linear solvation energy relationships for modeling responses from polymer-coated acoustic-wave vapor sensors.
    Hierlemann A; Zellers ET; Ricco AJ
    Anal Chem; 2001 Jul; 73(14):3458-66. PubMed ID: 11476248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling electrical response of polymer-coated SAW resonators by equivalent circuit representation.
    Kshetrimayum R; Yadava RD; Tandon RP
    Ultrasonics; 2011 Jul; 51(5):547-53. PubMed ID: 21236460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pore-bridging poly(dimethylsiloxane) membranes as selective interfaces for vapor-phase chemical sensing.
    Perez GP; Crooks RM
    Anal Chem; 2004 Jul; 76(14):4137-42. PubMed ID: 15253654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performances of mass-sensitive devices for gas sensing:  thickness shear mode and surface acoustic wave transducers.
    Bodenhöfer K; Hierlemann A; Noetzel G; Weimar U; Göpel W
    Anal Chem; 1996 Jul; 68(13):2210-8. PubMed ID: 21619307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifrequency characterization of viscoelastic polymers and vapor sensing based on SAW oscillators.
    Yadava RD; Kshetrimayum R; Khaneja M
    Ultrasonics; 2009 Dec; 49(8):638-45. PubMed ID: 19403152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring polymer properties using shear horizontal surface acoustic waves.
    Gallimore DY; Millard PJ; Pereira da Cunha M
    ACS Appl Mater Interfaces; 2009 Oct; 1(10):2382-9. PubMed ID: 20355876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of polydimethylsiloxane-air partition coefficients using headspace sorptive extraction.
    De Coensel N; Desmet K; Górecki T; Sandra P
    J Chromatogr A; 2007 May; 1150(1-2):183-9. PubMed ID: 17097669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depolarization of surface-attached hypothalamic mouse neurons studied by acoustic wave (thickness shear mode) detector.
    Cheung S; Fick LJ; Belsham DD; Thompson M
    Analyst; 2010 Feb; 135(2):289-95. PubMed ID: 20098760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time detection of organic compounds in liquid environments using polymer-coated thickness shear mode quartz resonators.
    Patel R; Zhou R; Zinszer K; Josse F; Cernosek R
    Anal Chem; 2000 Oct; 72(20):4888-98. PubMed ID: 11055705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical sensor based on surface acoustic wave resonator using Langmuir-Blodgett film.
    Nomura T; Takebayashi R; Saitoh A
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1261-5. PubMed ID: 18244288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(dimethylsiloxane)-coated sensor devices for the formation of supported lipid bilayers and the subsequent study of membrane interactions.
    Shahal T; Melzak KA; Lowe CR; Gizeli E
    Langmuir; 2008 Oct; 24(19):11268-75. PubMed ID: 18729340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling-of-modes analysis and modeling of polymer-coated surface acoustic wave resonators for chemical sensors.
    Kshetrimayum R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Aug; 59(8):1812-9. PubMed ID: 22899128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and quantification of aqueous aromatic hydrocarbons using SH-surface acoustic wave sensors.
    Bender F; Mohler RE; Ricco AJ; Josse F
    Anal Chem; 2014 Feb; 86(3):1794-9. PubMed ID: 24392747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a SAW poly(epichlorohydrin) gas sensor for detection of harmful chemicals.
    Pan Y; Wang P; Zhang G; Yan C; Zhang L; Guo T; Wang W; Zhai S
    Anal Methods; 2022 Apr; 14(16):1611-1622. PubMed ID: 35383795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real time monitoring of the effects of Heparan Sulfate Proteoglycan (HSPG) and surface charge on the cell adhesion process using thickness shear mode (TSM) sensor.
    Ergezen E; Hong S; Barbee KA; Lec R
    Biosens Bioelectron; 2007 Apr; 22(9-10):2256-60. PubMed ID: 17175157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boosting sensitivity of organic vapor detection with silicone block polyimide polymers.
    Potyrailo RA; Sivavec TM
    Anal Chem; 2004 Dec; 76(23):7023-7. PubMed ID: 15571355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen bond acidic polymers for surface acoustic wave vapor sensors and arrays.
    Grate JW; Patrash SJ; Kaganove SN; Wise BM
    Anal Chem; 1999 Mar; 71(5):1033-40. PubMed ID: 21662772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.