These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1119 related articles for article (PubMed ID: 21644679)
1. Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Duffy DC; McDonald JC; Schueller OJ; Whitesides GM Anal Chem; 1998 Dec; 70(23):4974-84. PubMed ID: 21644679 [TBL] [Abstract][Full Text] [Related]
2. A polymeric master replication technology for mass fabrication of poly(dimethylsiloxane) microfluidic devices. Li HF; Lin JM; Su RG; Cai ZW; Uchiyama K Electrophoresis; 2005 May; 26(9):1825-33. PubMed ID: 15812838 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of microfluidic systems in poly(dimethylsiloxane). McDonald JC; Duffy DC; Anderson JR; Chiu DT; Wu H; Schueller OJ; Whitesides GM Electrophoresis; 2000 Jan; 21(1):27-40. PubMed ID: 10634468 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and characterization of a poly(dimethylsiloxane)-poly(ethylene oxide) block copolymer for fabrication of amphiphilic surfaces on microfluidic devices. Klasner SA; Metto EC; Roman GT; Culbertson CT Langmuir; 2009 Sep; 25(17):10390-6. PubMed ID: 19572528 [TBL] [Abstract][Full Text] [Related]
5. Rapid fabrication of microfluidic devices in poly(dimethylsiloxane) by photocopying. Tan A; Rodgers K; Murrihy J; O'Mathuna C; Glennon JD Lab Chip; 2001 Sep; 1(1):7-9. PubMed ID: 15100882 [TBL] [Abstract][Full Text] [Related]
6. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite. Kim J; Surapaneni R; Gale BK Lab Chip; 2009 May; 9(9):1290-3. PubMed ID: 19370251 [TBL] [Abstract][Full Text] [Related]
7. Polyurethane from biosource as a new material for fabrication of microfluidic devices by rapid prototyping. Piccin E; Coltro WK; Fracassi da Silva JA; Neto SC; Mazo LH; Carrilho E J Chromatogr A; 2007 Nov; 1173(1-2):151-8. PubMed ID: 17964580 [TBL] [Abstract][Full Text] [Related]
8. Generation of hydrophilic poly(dimethylsiloxane) for high-performance microchip electrophoresis. Vickers JA; Caulum MM; Henry CS Anal Chem; 2006 Nov; 78(21):7446-52. PubMed ID: 17073411 [TBL] [Abstract][Full Text] [Related]
9. Rapid fabrication of a poly(dimethylsiloxane) microfluidic capillary gel electrophoresis system utilizing high precision machining. Zhao DS; Roy B; McCormick MT; Kuhr WG; Brazill SA Lab Chip; 2003 May; 3(2):93-9. PubMed ID: 15100789 [TBL] [Abstract][Full Text] [Related]
10. A conformal nano-adhesive via initiated chemical vapor deposition for microfluidic devices. Im SG; Bong KW; Lee CH; Doyle PS; Gleason KK Lab Chip; 2009 Feb; 9(3):411-6. PubMed ID: 19156290 [TBL] [Abstract][Full Text] [Related]
11. Rapid prototyping of microfluidic devices with a wax printer. Kaigala GV; Ho S; Penterman R; Backhouse CJ Lab Chip; 2007 Mar; 7(3):384-7. PubMed ID: 17330171 [TBL] [Abstract][Full Text] [Related]
12. Polyamine deactivation of integrated poly(dimethylsiloxane) structures investigated by radionuclide imaging and capillary electrophoresis experiments. Bergström SK; Edenwall N; Lavén M; Velikyan I; Långström B; Markides KE Anal Chem; 2005 Feb; 77(3):938-42. PubMed ID: 15679364 [TBL] [Abstract][Full Text] [Related]
13. Capillary zone electrophoresis of amino acids on a hybrid poly(dimethylsiloxane)-glass chip. Mourzina Y; Steffen A; Kalyagin D; Carius R; Offenhäusser A Electrophoresis; 2005 May; 26(9):1849-60. PubMed ID: 15719361 [TBL] [Abstract][Full Text] [Related]
14. Prototyping of microfluidic devices in poly(dimethylsiloxane) using solid-object printing. McDonald JC; Chabinyc ML; Metallo SJ; Anderson JR; Stroock AD; Whitesides GM Anal Chem; 2002 Apr; 74(7):1537-45. PubMed ID: 12033242 [TBL] [Abstract][Full Text] [Related]
15. Electroosmotic properties of microfluidic channels composed of poly(dimethylsiloxane). Ren X; Bachman M; Sims C; Li GP; Allbritton N J Chromatogr B Biomed Sci Appl; 2001 Oct; 762(2):117-25. PubMed ID: 11678371 [TBL] [Abstract][Full Text] [Related]
16. Electroosmotic flow in a poly(dimethylsiloxane) channel does not depend on percent curing agent. Wheeler AR; Trapp G; Trapp O; Zare RN Electrophoresis; 2004 Apr; 25(7-8):1120-4. PubMed ID: 15095455 [TBL] [Abstract][Full Text] [Related]
17. Rapid fabrication of microchannels using microscale plasma activated templating (microPLAT) generated water molds. Chao SH; Carlson R; Meldrum DR Lab Chip; 2007 May; 7(5):641-3. PubMed ID: 17476386 [TBL] [Abstract][Full Text] [Related]
18. Modification of poly(dimethylsiloxane) microfluidic channels with silica nanoparticles based on layer-by-layer assembly technique. Wang W; Zhao L; Zhang JR; Wang XM; Zhu JJ; Chen HY J Chromatogr A; 2006 Dec; 1136(1):111-7. PubMed ID: 17078959 [TBL] [Abstract][Full Text] [Related]
19. Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: cell culture and flow studies with glial cells. Peterson SL; McDonald A; Gourley PL; Sasaki DY J Biomed Mater Res A; 2005 Jan; 72(1):10-8. PubMed ID: 15534867 [TBL] [Abstract][Full Text] [Related]
20. Surface characterization using chemical force microscopy and the flow performance of modified polydimethylsiloxane for microfluidic device applications. Wang B; Abdulali-Kanji Z; Dodwell E; Horton JH; Oleschuk RD Electrophoresis; 2003 May; 24(9):1442-50. PubMed ID: 12731032 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]