These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 21644692)
1. Magnetic Sector ICPMS with Desolvating Micronebulization: Interference-Free Subpicogram Determination of Rare Earth Elements in Natural Samples. Field MP; Sherrell RM Anal Chem; 1998 Nov; 70(21):4480-6. PubMed ID: 21644692 [TBL] [Abstract][Full Text] [Related]
2. Comparison of inductively coupled plasma spectrometry techniques for the direct determination of rare earth elements in digests from geological samples. Ardini F; Soggia F; Rugi F; Udisti R; Grotti M Anal Chim Acta; 2010 Sep; 678(1):18-25. PubMed ID: 20869499 [TBL] [Abstract][Full Text] [Related]
3. Determination of arsenobetaine in fish tissue by species specific isotope dilution LC-LTQ-Orbitrap-MS and standard addition LC-ICPMS. Yang L; Ding J; Maxwell P; McCooeye M; Windust A; Ouerdane L; Bakirdere S; Willie S; Mester Z Anal Chem; 2011 May; 83(9):3371-8. PubMed ID: 21452903 [TBL] [Abstract][Full Text] [Related]
4. Measurements of natural carbonate rare earth elements in femtogram quantities by inductive coupled plasma sector field mass spectrometry. Shen CC; Wu CC; Liu Y; Yu J; Chang CC; Lam DD; Chou CJ; Lo L; Wei KY Anal Chem; 2011 Sep; 83(17):6842-8. PubMed ID: 21774547 [TBL] [Abstract][Full Text] [Related]
5. Ultratrace and isotope analysis of long-lived radionuclides by inductively coupled plasma quadrupole mass spectrometry using a direct injection high efficiency nebulizer. Becker JS; Dietze HJ; McLean JA; Montaser A Anal Chem; 1999 Aug; 71(15):3077-84. PubMed ID: 21662899 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of ultrasound-assisted extraction as sample pre-treatment for quantitative determination of rare earth elements in marine biological tissues by inductively coupled plasma-mass spectrometry. Costas M; Lavilla I; Gil S; Pena F; de la Calle I; Cabaleiro N; Bendicho C Anal Chim Acta; 2010 Oct; 679(1-2):49-55. PubMed ID: 20951856 [TBL] [Abstract][Full Text] [Related]
7. Direct determination of rare earth elements at the subpicogram per gram level in antarctic ice by ICP-SFMS using a desolvation system. Gabrielli P; Barbante C; Turetta C; Marteel A; Boutron C; Cozzi G; Cairns W; Ferrari C; Cescon P Anal Chem; 2006 Mar; 78(6):1883-9. PubMed ID: 16536424 [TBL] [Abstract][Full Text] [Related]
8. Precise determination of element/calcium ratios in calcareous samples using sector field inductively coupled plasma mass spectrometry. Rosenthal Y; Field MP; Sherrell RM Anal Chem; 1999 Aug; 71(15):3248-53. PubMed ID: 21662913 [TBL] [Abstract][Full Text] [Related]
9. Isotope ratio determination in boron analysis. Sah RN; Brown PH Biol Trace Elem Res; 1998; 66(1-3):39-53. PubMed ID: 10050906 [TBL] [Abstract][Full Text] [Related]
10. Inductively coupled plasma-sector field mass spectrometry with a high-efficiency sample introduction system for the determination of Pu isotopes in settling particles at femtogram levels. Zheng J; Yamada M Talanta; 2006 Jul; 69(5):1246-53. PubMed ID: 18970710 [TBL] [Abstract][Full Text] [Related]
11. Determination of Os and Re isotope ratios at subpicogram levels using MC-ICPMS with solution nebulization and multiple ion counting. Makishima A; Nakamura E Anal Chem; 2006 Jun; 78(11):3794-9. PubMed ID: 16737239 [TBL] [Abstract][Full Text] [Related]
12. Determination of trace elements by inductively coupled plasma mass spectrometry of biomass and fuel oil reference materials using milligram sample sizes. Lachas H; Richaud R; Herod AA; Dugwell DR; Kandiyoti R Rapid Commun Mass Spectrom; 2000; 14(5):335-43. PubMed ID: 10700035 [TBL] [Abstract][Full Text] [Related]
13. Low Blank Preconcentration Technique for the Determination of Lead, Copper, and Cadmium in Small-Volume Seawater Samples by Isotope Dilution ICPMS. Wu J; Boyle EA Anal Chem; 1997 Jul; 69(13):2464-70. PubMed ID: 21639382 [TBL] [Abstract][Full Text] [Related]
14. Direct determination of trace elements in powdered samples by in-cell isotope dilution femtosecond laser ablation ICPMS. Fernández B; Claverie F; Pécheyran C; Alexis J; Donard OF Anal Chem; 2008 Sep; 80(18):6981-94. PubMed ID: 18714966 [TBL] [Abstract][Full Text] [Related]
15. Determination of Rare Earth Elements in multi-year high-resolution Arctic aerosol record by double focusing Inductively Coupled Plasma Mass Spectrometry with desolvation nebulizer inlet system. Giardi F; Traversi R; Becagli S; Severi M; Caiazzo L; Ancillotti C; Udisti R Sci Total Environ; 2018 Feb; 613-614():1284-1294. PubMed ID: 28968931 [TBL] [Abstract][Full Text] [Related]
16. Accurate and precise determination of silver isotope fractionation in environmental samples by multicollector-ICPMS. Luo Y; Dabek-Zlotorzynska E; Celo V; Muir DC; Yang L Anal Chem; 2010 May; 82(9):3922-8. PubMed ID: 20361770 [TBL] [Abstract][Full Text] [Related]
17. Highly-sensitive open-cell LA-ICPMS approaches for the quantification of rare earth elements in natural carbonates at parts-per-billion levels. Wu CC; Burger M; Günther D; Shen CC; Hattendorf B Anal Chim Acta; 2018 Aug; 1018():54-61. PubMed ID: 29605134 [TBL] [Abstract][Full Text] [Related]
18. A preconcentration/matrix reduction method for the analysis of rare earth elements in seawater and groundwaters by isotope dilution ICPMS. Shaw TJ; Duncan T; Schnetger B Anal Chem; 2003 Jul; 75(14):3396-3403. PubMed ID: 14570189 [TBL] [Abstract][Full Text] [Related]
19. Development of an analytical method for accurate and precise determination of rare earth element concentrations in geological materials using an MC-ICP-MS and group separation. Lee SG; Ko KS Front Chem; 2022; 10():906160. PubMed ID: 36712979 [TBL] [Abstract][Full Text] [Related]
20. Determinations of rare earth element abundance and U-Pb age of zircons using multispot laser ablation-inductively coupled plasma mass spectrometry. Yokoyama TD; Suzuki T; Kon Y; Hirata T Anal Chem; 2011 Dec; 83(23):8892-9. PubMed ID: 21999188 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]