These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 21644719)

  • 1. Selective removal of cesium from Acid solutions with immobilized copper ferrocyanide.
    Clarke TD; Wai CM
    Anal Chem; 1998 Sep; 70(17):3708-11. PubMed ID: 21644719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colloid stable sorbents for cesium removal: preparation and application of latex particles functionalized with transition metals ferrocyanides.
    Avramenko V; Bratskaya S; Zheleznov V; Sheveleva I; Voitenko O; Sergienko V
    J Hazard Mater; 2011 Feb; 186(2-3):1343-50. PubMed ID: 21208744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of hollow mesoporous silica spheres functionalized with copper ferrocyanide and its application for Cs
    Peng X; Zheng J; Wang J; Xiang C; Wang R
    Environ Sci Pollut Res Int; 2022 Jul; 29(35):53509-53521. PubMed ID: 35287192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of calix-crown ionophores for selective separation of radio-cesium from acidic nuclear waste solution.
    Mohapatra PK; Ansari SA; Sarkar A; Bhattacharyya A; Manchanda VK
    Anal Chim Acta; 2006 Jul; 571(2):308-14. PubMed ID: 17723452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective sorption of cesium using self-assembled monolayers on mesoporous supports.
    Lin Y; Fryxell GE; Wu H; Engelhard M
    Environ Sci Technol; 2001 Oct; 35(19):3962-6. PubMed ID: 11642461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficiency of aluminum-pillared montmorillonite on the removal of cesium and copper from aqueous solutions.
    Karamanis D; Assimakopoulos PA
    Water Res; 2007 May; 41(9):1897-906. PubMed ID: 17374545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica.
    Sangvanich T; Sukwarotwat V; Wiacek RJ; Grudzien RM; Fryxell GE; Addleman RS; Timchalk C; Yantasee W
    J Hazard Mater; 2010 Oct; 182(1-3):225-31. PubMed ID: 20594644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of a novel polyvinylidene fluoride membrane via binding SiO
    Ding S; Zhang L; Li Y; Hou LA
    J Hazard Mater; 2019 Apr; 368():292-299. PubMed ID: 30685717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective recovery of Cr and Cu in leachate from chromated copper arsenate treated wood using chelating and acidic ion exchange resins.
    Janin A; Blais JF; Mercier G; Drogui P
    J Hazard Mater; 2009 Sep; 169(1-3):1099-105. PubMed ID: 19446391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80.
    Pehlivan E; Altun T
    J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of copper speciation in model solutions of humic acid by mini-columns packed with Chelex-100 and new chelating agents: application to speciation of selected heavy metals in environmental water samples.
    Kiptoo JK; Ngila JC; Silavwe ND
    J Hazard Mater; 2009 Dec; 172(2-3):1163-7. PubMed ID: 19709807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrodriven selective transport of Cs+ using chlorinated cobalt dicarbollide in polymer inclusion membrane: a novel approach for cesium removal from simulated nuclear waste solution.
    Chaudhury S; Bhattacharyya A; Goswami A
    Environ Sci Technol; 2014 Nov; 48(21):12994-3000. PubMed ID: 25299942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling of the acid-base properties of natural and synthetic adsorbent materials used for heavy metal removal from aqueous solutions.
    Pagnanelli F; VegliĆ² F; Toro L
    Chemosphere; 2004 Feb; 54(7):905-15. PubMed ID: 14637348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering a lignocellulosic biosorbent--coir pith for removal of cesium from aqueous solutions: equilibrium and kinetic studies.
    Parab H; Sudersanan M
    Water Res; 2010 Feb; 44(3):854-60. PubMed ID: 19819515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melamine-formaldehyde-NTA chelating gel resin: Synthesis, characterization and application for copper(II) ion removal from synthetic wastewater.
    Baraka A; Hall PJ; Heslop MJ
    J Hazard Mater; 2007 Feb; 140(1-2):86-94. PubMed ID: 16887265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of different extracting solutions on the electrodialytic remediation of CCA-treated wood waste Part I. Behaviour of Cu and Cr.
    Velizarova E; Ribeiro AB; Mateus E; Ottosen LM
    J Hazard Mater; 2004 Mar; 107(3):103-13. PubMed ID: 15072818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of chelating agents immobilized on glass with chelex 100 for removal and preconcentration of trace copper(II).
    Ryan DK; Weber JH
    Talanta; 1985 Sep; 32(9):859-63. PubMed ID: 18963911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of polymer inclusion membranes containing crown ethers for selective cesium separation from nuclear waste solution.
    Mohapatra PK; Lakshmi DS; Bhattacharyya A; Manchanda VK
    J Hazard Mater; 2009 Sep; 169(1-3):472-9. PubMed ID: 19398153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimized enrichment and purification of ferrocyanide for 13/12C and 15/14N isotope analysis of aqueous solutions.
    Schulte U; Weihmann J; Mansfeldt T
    Water Res; 2010 Oct; 44(18):5414-22. PubMed ID: 20619435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chelating agent-assisted electrokinetic removal of cadmium, lead and copper from contaminated soils.
    Giannis A; Nikolaou A; Pentari D; Gidarakos E
    Environ Pollut; 2009 Dec; 157(12):3379-86. PubMed ID: 19608313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.