BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 21645095)

  • 1. Neural mechanisms of saccade target selection: gated accumulator model of the visual-motor cascade.
    Schall JD; Purcell BA; Heitz RP; Logan GD; Palmeri TJ
    Eur J Neurosci; 2011 Jun; 33(11):1991-2002. PubMed ID: 21645095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurally constrained modeling of speed-accuracy tradeoff during visual search: gated accumulation of modulated evidence.
    Servant M; Tillman G; Schall JD; Logan GD; Palmeri TJ
    J Neurophysiol; 2019 Apr; 121(4):1300-1314. PubMed ID: 30726163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From salience to saccades: multiple-alternative gated stochastic accumulator model of visual search.
    Purcell BA; Schall JD; Logan GD; Palmeri TJ
    J Neurosci; 2012 Mar; 32(10):3433-46. PubMed ID: 22399766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural control of visual search by frontal eye field: effects of unexpected target displacement on visual selection and saccade preparation.
    Murthy A; Ray S; Shorter SM; Schall JD; Thompson KG
    J Neurophysiol; 2009 May; 101(5):2485-506. PubMed ID: 19261711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search.
    Thompson KG; Hanes DP; Bichot NP; Schall JD
    J Neurophysiol; 1996 Dec; 76(6):4040-55. PubMed ID: 8985899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linking express saccade occurance to stimulus properties and sensorimotor integration in the superior colliculus.
    Marino RA; Levy R; Munoz DP
    J Neurophysiol; 2015 Aug; 114(2):879-92. PubMed ID: 26063770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional distinction between visuomovement and movement neurons in macaque frontal eye field during saccade countermanding.
    Ray S; Pouget P; Schall JD
    J Neurophysiol; 2009 Dec; 102(6):3091-100. PubMed ID: 19776364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relation of frontal eye field activity to saccade initiation during a countermanding task.
    Brown JW; Hanes DP; Schall JD; Stuphorn V
    Exp Brain Res; 2008 Sep; 190(2):135-51. PubMed ID: 18604527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primate frontal eye fields. I. Single neurons discharging before saccades.
    Bruce CJ; Goldberg ME
    J Neurophysiol; 1985 Mar; 53(3):603-35. PubMed ID: 3981231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salience by competitive and recurrent interactions: Bridging neural spiking and computation in visual attention.
    Cox GE; Palmeri TJ; Logan GD; Smith PL; Schall JD
    Psychol Rev; 2022 Oct; 129(5):1144-1182. PubMed ID: 35389715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Central mesencephalic reticular formation (cMRF) neurons discharging before and during eye movements.
    Waitzman DM; Silakov VL; Cohen B
    J Neurophysiol; 1996 Apr; 75(4):1546-72. PubMed ID: 8727396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supplementary eye field: representation of saccades and relationship between neural response fields and elicited eye movements.
    Russo GS; Bruce CJ
    J Neurophysiol; 2000 Nov; 84(5):2605-21. PubMed ID: 11068002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal.
    Goldberg ME; Bruce CJ
    J Neurophysiol; 1990 Aug; 64(2):489-508. PubMed ID: 2213128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The responses of visual neurons in the frontal eye field are biased for saccades.
    Lawrence BM; Snyder LH
    J Neurosci; 2009 Nov; 29(44):13815-22. PubMed ID: 19889993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frontal eye field activity before visual search errors reveals the integration of bottom-up and top-down salience.
    Thompson KG; Bichot NP; Sato TR
    J Neurophysiol; 2005 Jan; 93(1):337-51. PubMed ID: 15317836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The neural selection and control of saccades by the frontal eye field.
    Schall JD
    Philos Trans R Soc Lond B Biol Sci; 2002 Aug; 357(1424):1073-82. PubMed ID: 12217175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural basis of saccade target selection in frontal eye field during visual search.
    Schall JD; Hanes DP
    Nature; 1993 Dec; 366(6454):467-9. PubMed ID: 8247155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corollary discharge and spatial updating: when the brain is split, is space still unified?
    Colby CL; Berman RA; Heiser LM; Saunders RC
    Prog Brain Res; 2005; 149():187-205. PubMed ID: 16226585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of stimulus-response compatibility on neural selection in frontal eye field.
    Sato TR; Schall JD
    Neuron; 2003 May; 38(4):637-48. PubMed ID: 12765614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of frontal eye fields in countermanding saccades: visual, movement, and fixation activity.
    Hanes DP; Patterson WF; Schall JD
    J Neurophysiol; 1998 Feb; 79(2):817-34. PubMed ID: 9463444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.