These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 21645395)

  • 1. Does thermoregulatory behavior maximize reproductive fitness of natural isolates of Caenorhabditis elegans?
    Anderson JL; Albergotti L; Ellebracht B; Huey RB; Phillips PC
    BMC Evol Biol; 2011 Jun; 11():157. PubMed ID: 21645395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal preference of Caenorhabditis elegans: a null model and empirical tests.
    Anderson JL; Albergotti L; Proulx S; Peden C; Huey RB; Phillips PC
    J Exp Biol; 2007 Sep; 210(Pt 17):3107-16. PubMed ID: 17704085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural variations of cold tolerance and temperature acclimation in Caenorhabditis elegans.
    Okahata M; Ohta A; Mizutani H; Minakuchi Y; Toyoda A; Kuhara A
    J Comp Physiol B; 2016 Dec; 186(8):985-998. PubMed ID: 27318666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal variation reveals natural variation between isolates of Caenorhabditis elegans.
    Harvey SC; Viney ME
    J Exp Zool B Mol Dev Evol; 2007 Jul; 308(4):409-16. PubMed ID: 17377952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reproductive fitness and dietary choice behavior of the genetic model organism Caenorhabditis elegans under semi-natural conditions.
    Freyth K; Janowitz T; Nunes F; Voss M; Heinick A; Bertaux J; Scheu S; Paul RJ
    Mol Cells; 2010 Oct; 30(4):347-53. PubMed ID: 20821059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A test of the thermal coadaptation hypothesis with ultimate measures of fitness in flour beetles.
    Halliday WD; Blouin-Demers G
    J Therm Biol; 2017 Oct; 69():206-212. PubMed ID: 29037384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature, stress and spontaneous mutation in Caenorhabditis briggsae and Caenorhabditis elegans.
    Matsuba C; Ostrow DG; Salomon MP; Tolani A; Baer CF
    Biol Lett; 2013 Feb; 9(1):20120334. PubMed ID: 22875817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-dependent behaviours are genetically variable in the nematode Caenorhabditis briggsae.
    Stegeman GW; de Mesquita MB; Ryu WS; Cutter AD
    J Exp Biol; 2013 Mar; 216(Pt 5):850-8. PubMed ID: 23155083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A large close relative of C. elegans is slow-developing but not long-lived.
    Woodruff GC; Johnson E; Phillips PC
    BMC Evol Biol; 2019 Mar; 19(1):74. PubMed ID: 30866802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ecology and biodemography of Caenorhabditis elegans.
    Chen J; Lewis EE; Carey JR; Caswell H; Caswell-Chen EP
    Exp Gerontol; 2006 Oct; 41(10):1059-65. PubMed ID: 16963216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic effects on the evolution of performance curves.
    Asbury DA; Angilletta MJ
    Am Nat; 2010 Aug; 176(2):E40-9. PubMed ID: 20528470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution and movement of Caenorhabditis elegans on a thermal gradient.
    Yamada Y; Ohshima Y
    J Exp Biol; 2003 Aug; 206(Pt 15):2581-93. PubMed ID: 12819265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The piRNA pathway responds to environmental signals to establish intergenerational adaptation to stress.
    Belicard T; Jareosettasin P; Sarkies P
    BMC Biol; 2018 Sep; 16(1):103. PubMed ID: 30227863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between thermoregulatory behavior and physiological acclimatization in a wild lizard population.
    Domínguez-Guerrero SF; Muñoz MM; Pasten-Téllez DJ; Arenas-Moreno DM; Rodríguez-Miranda LA; Manríquez-Morán NL; Méndez-de la Cruz FR
    J Therm Biol; 2019 Jan; 79():135-143. PubMed ID: 30612673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal preference and performance in a sub-Antarctic caterpillar: A test of the coadaptation hypothesis and its alternatives.
    Haupt TM; Sinclair BJ; Chown SL
    J Insect Physiol; 2017 Apr; 98():108-116. PubMed ID: 28034677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature preference and reproductive fitness of the annual killifish Austrofundulus limnaeus exposed to constant and fluctuating temperatures.
    Podrabsky JE; Clelen D; Crawshaw LI
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Apr; 194(4):385-93. PubMed ID: 18224326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sex and Mitonuclear Adaptation in Experimental
    Wernick RI; Christy SF; Howe DK; Sullins JA; Ramirez JF; Sare M; Penley MJ; Morran LT; Denver DR; Estes S
    Genetics; 2019 Mar; 211(3):1045-1058. PubMed ID: 30670540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal dependence of sprint performance in the lizard Psammodromus algirus along a 2200-meter elevational gradient: Cold-habitat lizards do not perform better at low temperatures.
    Zamora-Camacho FJ; Rubiño-Hispán MV; Reguera S; Moreno-Rueda G
    J Therm Biol; 2015 Aug; 52():90-6. PubMed ID: 26267503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A demographic analysis of the fitness cost of extended longevity in Caenorhabditis elegans.
    Chen J; Senturk D; Wang JL; Müller HG; Carey JR; Caswell H; Caswell-Chen EP
    J Gerontol A Biol Sci Med Sci; 2007 Feb; 62(2):126-35. PubMed ID: 17339638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of Photorhabdus luminescens (Enterobacteriaceae) on the survival, development, reproduction and behaviour of Caenorhabditis elegans (Nematoda: Rhabditidae).
    Sicard M; Hering S; Schulte R; Gaudriault S; Schulenburg H
    Environ Microbiol; 2007 Jan; 9(1):12-25. PubMed ID: 17227408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.