BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 21645558)

  • 1. Phasic reward responses in the monkey striatum as detected by voltammetry with diamond microelectrodes.
    Yoshimi K; Naya Y; Mitani N; Kato T; Inoue M; Natori S; Takahashi T; Weitemier A; Nishikawa N; McHugh T; Einaga Y; Kitazawa S
    Neurosci Res; 2011 Sep; 71(1):49-62. PubMed ID: 21645558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reward-Induced Phasic Dopamine Release in the Monkey Ventral Striatum and Putamen.
    Yoshimi K; Kumada S; Weitemier A; Jo T; Inoue M
    PLoS One; 2015; 10(6):e0130443. PubMed ID: 26110516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subsecond reward-related dopamine release in the mouse dorsal striatum.
    Natori S; Yoshimi K; Takahashi T; Kagohashi M; Oyama G; Shimo Y; Hattori N; Kitazawa S
    Neurosci Res; 2009 Apr; 63(4):267-72. PubMed ID: 19367786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Striatal dopamine release in the rat during a cued lever-press task for food reward and the development of changes over time measured using high-speed voltammetry.
    Nakazato T
    Exp Brain Res; 2005 Sep; 166(1):137-46. PubMed ID: 16028033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Primary food reward and reward-predictive stimuli evoke different patterns of phasic dopamine signaling throughout the striatum.
    Brown HD; McCutcheon JE; Cone JJ; Ragozzino ME; Roitman MF
    Eur J Neurosci; 2011 Dec; 34(12):1997-2006. PubMed ID: 22122410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NR2A-containing NMDA receptors depress glutamatergic synaptic transmission and evoked-dopamine release in the mouse striatum.
    Schotanus SM; Chergui K
    J Neurochem; 2008 Aug; 106(4):1758-65. PubMed ID: 18540994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reward-predicting activity of dopamine and caudate neurons--a possible mechanism of motivational control of saccadic eye movement.
    Kawagoe R; Takikawa Y; Hikosaka O
    J Neurophysiol; 2004 Feb; 91(2):1013-24. PubMed ID: 14523067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated wireless fast-scan cyclic voltammetry recording and electrical stimulation for reward-predictive learning in awake, freely moving rats.
    Li YT; Wickens JR; Huang YL; Pan WH; Chen FY; Chen JJ
    J Neural Eng; 2013 Aug; 10(4):046007. PubMed ID: 23770892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phasic dopamine signaling during behavior, reward, and disease states.
    Heien ML; Wightman RM
    CNS Neurol Disord Drug Targets; 2006 Feb; 5(1):99-108. PubMed ID: 16613556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nicotine amplifies reward-related dopamine signals in striatum.
    Rice ME; Cragg SJ
    Nat Neurosci; 2004 Jun; 7(6):583-4. PubMed ID: 15146188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The corticostriatal input to giant aspiny interneurons in the rat: a candidate pathway for synchronising the response to reward-related cues.
    Reynolds JN; Wickens JR
    Brain Res; 2004 Jun; 1011(1):115-28. PubMed ID: 15140651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanics of self-stimulation and dopamine release in the nucleus accumbens.
    Yavich L; Tanila H
    Neuroreport; 2007 Aug; 18(12):1271-4. PubMed ID: 17632281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon and diamond paste microelectrodes based on Mn(III) porphyrins for the determination of dopamine.
    Balasoiu SC; Stefan-van Staden RI; van Staden JF; Pruneanu S; Radu GL
    Anal Chim Acta; 2010 Jun; 668(2):201-7. PubMed ID: 20493299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Physiological interaction between acetylcholine and dopamine in the striatum].
    Aosaki T; Miura M; Masuda M
    Brain Nerve; 2009 Apr; 61(4):373-80. PubMed ID: 19378806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo.
    Swamy BE; Venton BJ
    Analyst; 2007 Sep; 132(9):876-84. PubMed ID: 17710262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dopamine neuronal responses in monkeys performing visually cued reward schedules.
    Ravel S; Richmond BJ
    Eur J Neurosci; 2006 Jul; 24(1):277-90. PubMed ID: 16882024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of striatal single units by expected reward: a spiny neuron model displaying dopamine-induced bistability.
    Gruber AJ; Solla SA; Surmeier DJ; Houk JC
    J Neurophysiol; 2003 Aug; 90(2):1095-114. PubMed ID: 12649314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in nucleus accumbens dopamine transmission associated with fixed- and variable-time schedule-induced feeding.
    Richardson NR; Gratton A
    Eur J Neurosci; 2008 May; 27(10):2714-23. PubMed ID: 18513317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection.
    Suzuki A; Ivandini TA; Yoshimi K; Fujishima A; Oyama G; Nakazato T; Hattori N; Kitazawa S; Einaga Y
    Anal Chem; 2007 Nov; 79(22):8608-15. PubMed ID: 17918970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal correlations among functionally specialized striatal neural ensembles in reward-conditioned mice.
    Bakhurin KI; Mac V; Golshani P; Masmanidis SC
    J Neurophysiol; 2016 Mar; 115(3):1521-32. PubMed ID: 26763779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.