These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 21645670)
1. Gondola-shaped tetra-rhenium metallacycles modified evanescent wave infrared chemical sensors for selective determination of volatile organic compounds. Huang GG; Lee CJ; Tsai BC; Yang J; Sathiyendiran M; Lu KL Talanta; 2011 Jul; 85(1):63-9. PubMed ID: 21645670 [TBL] [Abstract][Full Text] [Related]
2. Gondola-shaped luminescent tetrarhenium metallacycles with crown-ether-like multiple recognition sites. Sathiyendiran M; Liao RT; Thanasekaran P; Luo TT; Venkataramanan NS; Lee GH; Peng SM; Lu KL Inorg Chem; 2006 Dec; 45(25):10052-4. PubMed ID: 17140209 [TBL] [Abstract][Full Text] [Related]
3. One-step orthogonal-bonding approach to the self-assembly of neutral rhenium-based metallacycles: synthesis, structures, photophysics, and sensing applications. Thanasekaran P; Lee CC; Lu KL Acc Chem Res; 2012 Sep; 45(9):1403-18. PubMed ID: 22721174 [TBL] [Abstract][Full Text] [Related]
4. Characterization of infrared chemical sensors modified with ZnO nanowires for the detection of volatile organic compounds. Yang J; Shih YR; Chen IC; Kuo CI; Huang YS Appl Spectrosc; 2005 Aug; 59(8):1002-8. PubMed ID: 16105208 [TBL] [Abstract][Full Text] [Related]
5. ZnO nanoparticle-modified infrared internal reflection elements for selective detection of volatile organic compounds. Huang GG; Wang CT; Tang HT; Huang YS; Yang J Anal Chem; 2006 Apr; 78(7):2397-404. PubMed ID: 16579626 [TBL] [Abstract][Full Text] [Related]
6. Rhenium-Based Molecular Trap as an Evanescent Wave Infrared Chemical Sensing Medium for the Selective Determination of Amines in Air. Huang GG; Lee CJ; Yang J; Chang CH; Sathiyendiran M; Lu ZZ; Lu KL ACS Appl Mater Interfaces; 2016 Dec; 8(51):35634-35640. PubMed ID: 27966858 [TBL] [Abstract][Full Text] [Related]
7. Membrane-introduced infrared spectroscopic chemical sensing method for the detection of volatile organic compounds in aqueous solutions. Yang J; Ramesh A Analyst; 2005 Mar; 130(3):397-403. PubMed ID: 15724171 [TBL] [Abstract][Full Text] [Related]
8. Evanescent wave infrared chemical sensor possessing a sulfonated sensing phase for the selective detection of arginine in biological fluids. Wei YK; Yang J Talanta; 2007 Mar; 71(5):2007-14. PubMed ID: 19071556 [TBL] [Abstract][Full Text] [Related]
9. Optical detection of volatile organic compounds using selective tensile effects of a polymer-coated fiber Bragg grating. Park CS; Han Y; Joo KI; Lee YW; Kang SW; Kim HR Opt Express; 2010 Nov; 18(24):24753-61. PubMed ID: 21164823 [TBL] [Abstract][Full Text] [Related]
10. Optical waveguide sensor of volatile organic compounds based on PTA thin film. Abdurahman R; Yimit A; Ablat H; Mahmut M; Wang JD; Itoh K Anal Chim Acta; 2010 Jan; 658(1):63-7. PubMed ID: 20082775 [TBL] [Abstract][Full Text] [Related]
11. Detection and quantification of trace organic contaminants in water using the FT-IR-attenuated total reflectance technique. Lin W; Li Z Anal Chem; 2010 Jan; 82(2):505-15. PubMed ID: 20038113 [TBL] [Abstract][Full Text] [Related]
12. [Determination of volatile organic compounds in drinking water by purge and trap gas chromatography/mass spectrometry]. Luo T; Zhou ZR; Lin SB Wei Sheng Yan Jiu; 2006 Jul; 35(4):504-7. PubMed ID: 16986534 [TBL] [Abstract][Full Text] [Related]
13. An infrared evanescent wave sensing system coupled with a hollow fiber membrane for detection of volatile organic compounds in aqueous solutions. Wei YK; Yang J Anal Sci; 2005 Oct; 21(10):1195-201. PubMed ID: 16270578 [TBL] [Abstract][Full Text] [Related]
14. Gas-Assisted IR-ATR Probe for Detection of Volatile Compounds in Aqueous Solutions. Yang J; Her JW Anal Chem; 1999 May; 71(9):1773-9. PubMed ID: 21662817 [TBL] [Abstract][Full Text] [Related]
15. High-sensitivity infrared attenuated total reflectance sensors for in situ multicomponent detection of volatile organic compounds in water. Lu R; Li WW; Mizaikoff B; Katzir A; Raichlin Y; Sheng GP; Yu HQ Nat Protoc; 2016 Feb; 11(2):377-86. PubMed ID: 26820794 [TBL] [Abstract][Full Text] [Related]
16. Diverse chemiresistors based upon covalently modified multiwalled carbon nanotubes. Wang F; Swager TM J Am Chem Soc; 2011 Jul; 133(29):11181-93. PubMed ID: 21718043 [TBL] [Abstract][Full Text] [Related]
17. Probing the adsorption characteristic of metal-organic framework MIL-101 for volatile organic compounds by quartz crystal microbalance. Huang CY; Song M; Gu ZY; Wang HF; Yan XP Environ Sci Technol; 2011 May; 45(10):4490-6. PubMed ID: 21500773 [TBL] [Abstract][Full Text] [Related]
18. alpha-Cyclodextrin-modified infrared chemical sensor for selective determination of tyrosine in biological fluids. Lee CJ; Yang J Anal Biochem; 2006 Dec; 359(1):124-31. PubMed ID: 17046708 [TBL] [Abstract][Full Text] [Related]
19. A fiber-optic sensor to detect volatile organic compounds based on a porous silica xerogel film. EcheverrÃa JC; de Vicente P; Estella J; Garrido JJ Talanta; 2012 Sep; 99():433-40. PubMed ID: 22967576 [TBL] [Abstract][Full Text] [Related]
20. Enhanced sensing of nonpolar volatile organic compounds by silicon nanowire field effect transistors. Paska Y; Stelzner T; Christiansen S; Haick H ACS Nano; 2011 Jul; 5(7):5620-6. PubMed ID: 21648442 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]