BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 21645714)

  • 21. Monitoring of volatile compound emissions during dry anaerobic digestion of the Organic Fraction of Municipal Solid Waste by Proton Transfer Reaction Time-of-Flight Mass Spectrometry.
    Papurello D; Soukoulis C; Schuhfried E; Cappellin L; Gasperi F; Silvestri S; Santarelli M; Biasioli F
    Bioresour Technol; 2012 Dec; 126():254-65. PubMed ID: 23079412
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Degradation of LIM domain-binding protein three during processing of Spanish dry-cured ham.
    Gallego M; Mora L; Fraser PD; Aristoy MC; Toldrá F
    Food Chem; 2014 Apr; 149():121-8. PubMed ID: 24295685
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of the inclusion of chestnut in the finishing diet on volatile compounds during the manufacture of dry-cured "Lacón" from Celta pig breed.
    Lorenzo JM; Franco D; Carballo J
    Meat Sci; 2014 Jan; 96(1):211-23. PubMed ID: 23911930
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oligopeptides arising from the degradation of creatine kinase in Spanish dry-cured ham.
    Mora L; Sentandreu MA; Fraser PD; Toldrá F; Bramley PM
    J Agric Food Chem; 2009 Oct; 57(19):8982-8. PubMed ID: 19731913
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PTR-TOF-MS analysis of volatile compounds in olive fruits.
    Masi E; Romani A; Pandolfi C; Heimler D; Mancuso S
    J Sci Food Agric; 2015 May; 95(7):1428-34. PubMed ID: 25060484
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The evolution of volatile compounds profile of "Toscano" dry-cured ham during ripening as revealed by SPME-GC-MS approach.
    Pugliese C; Sirtori F; Calamai L; Franci O
    J Mass Spectrom; 2010 Sep; 45(9):1056-64. PubMed ID: 20799283
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differentiation of dry-cured hams from different processing methods by means of volatile compounds, physico-chemical and sensory analysis.
    Petričević S; Marušić Radovčić N; Lukić K; Listeš E; Medić H
    Meat Sci; 2018 Mar; 137():217-227. PubMed ID: 29223014
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of the partial replacement of sodium chloride by other salts on the formation of volatile compounds during ripening of dry-cured ham.
    Armenteros M; Toldrá F; Aristoy MC; Ventanas J; Estévez M
    J Agric Food Chem; 2012 Aug; 60(31):7607-15. PubMed ID: 22804717
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of origin, breeding and processing conditions on the isotope ratios of bioelements in dry-cured ham.
    Perini M; Camin F; Sánchez del Pulgar J; Piasentier E
    Food Chem; 2013 Feb; 136(3-4):1543-50. PubMed ID: 23194560
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Titin-derived peptides as processing time markers in dry-cured ham.
    Gallego M; Mora L; Aristoy MC; Toldrá F
    Food Chem; 2015 Jan; 167():326-39. PubMed ID: 25148995
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of computed tomography to study raw ham properties and predict salt content and distribution during dry-cured ham production.
    Håseth TT; Sørheim O; Høy M; Egelandsdal B
    Meat Sci; 2012 Mar; 90(3):858-64. PubMed ID: 22154569
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of volatile compounds in two raspberry cultivars by two headspace techniques: solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) and proton-transfer reaction-mass spectrometry (PTR-MS).
    Aprea E; Biasioli F; Carlin S; Endrizzi I; Gasperi F
    J Agric Food Chem; 2009 May; 57(10):4011-8. PubMed ID: 19348421
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contribution of a selected fungal population to proteolysis on dry-cured ham.
    Martín A; Córdoba JJ; Núñez F; Benito MJ; Asensio MA
    Int J Food Microbiol; 2004 Jul; 94(1):55-66. PubMed ID: 15172485
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Volatile and amino acid profiling of dry cured hams from different swine breeds and processing methods.
    García-González DL; Aparicio R; Aparicio-Ruiz R
    Molecules; 2013 Apr; 18(4):3927-47. PubMed ID: 23552905
    [TBL] [Abstract][Full Text] [Related]  

  • 35. GC × GC-ToF-MS and GC-IMS based volatile profile characterization of the Chinese dry-cured hams from different regions.
    Li W; Chen YP; Blank I; Li F; Li C; Liu Y
    Food Res Int; 2021 Apr; 142():110222. PubMed ID: 33773696
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SIFT-MS analysis of Iberian hams from pigs reared under different conditions.
    Carrapiso AI; Noseda B; García C; Reina R; Sánchez Del Pulgar J; Devlieghere F
    Meat Sci; 2015 Jun; 104():8-13. PubMed ID: 25679487
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification and quantification of cholesterol and cholesterol oxidation products in different types of Iberian hams.
    Petrón MJ; García-Regueiro JA; Martín L; Muriel E; Antequera T
    J Agric Food Chem; 2003 Sep; 51(19):5786-91. PubMed ID: 12952434
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Iberian ham typification by direct infusion electrospray and photospray ionization mass spectrometry fingerprinting.
    González-Dominguez R; García-Barrera T; Gómez-Ariza JL
    Rapid Commun Mass Spectrom; 2012 Apr; 26(7):835-44. PubMed ID: 22368064
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of volatile compounds in Chinese dry-cured hams by comprehensive two-dimensional gas chromatography with high-resolution time-of-flight mass spectrometry.
    Wang W; Feng X; Zhang D; Li B; Sun B; Tian H; Liu Y
    Meat Sci; 2018 Jun; 140():14-25. PubMed ID: 29501929
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of volatile compounds and quality parameters of traditional Istrian dry-cured ham.
    Marušić N; Vidaček S; Janči T; Petrak T; Medić H
    Meat Sci; 2014 Apr; 96(4):1409-16. PubMed ID: 24398000
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.