These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

470 related articles for article (PubMed ID: 21645737)

  • 1. Selective colorimetric sensing of cysteine in aqueous solutions using silver nanoparticles in the presence of Cr³+.
    Ravindran A; Mani V; Chandrasekaran N; Mukherjee A
    Talanta; 2011 Jul; 85(1):533-40. PubMed ID: 21645737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes.
    Li L; Li B
    Analyst; 2009 Jul; 134(7):1361-5. PubMed ID: 19562202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colorimetric detection of iron ions (III) based on the highly sensitive plasmonic response of the N-acetyl-L-cysteine-stabilized silver nanoparticles.
    Gao X; Lu Y; He S; Li X; Chen W
    Anal Chim Acta; 2015 Jun; 879():118-25. PubMed ID: 26002486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colorimetric detection of trace copper ions based on catalytic leaching of silver-coated gold nanoparticles.
    Lou T; Chen L; Chen Z; Wang Y; Chen L; Li J
    ACS Appl Mater Interfaces; 2011 Nov; 3(11):4215-20. PubMed ID: 21970438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dithiocarbamate-capped silver nanoparticles as a resonance light scattering probe for simultaneous detection of lead(II) ions and cysteine.
    Cao H; Wei M; Chen Z; Huang Y
    Analyst; 2013 Apr; 138(8):2420-6. PubMed ID: 23463028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gum kondagogu reduced/stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg²⁺ in aqueous system.
    Rastogi L; Sashidhar RB; Karunasagar D; Arunachalam J
    Talanta; 2014 Jan; 118():111-7. PubMed ID: 24274277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplexed analysis of silver(I) and mercury(II) ions using oligonucletide-metal nanoparticle conjugates.
    Huy GD; Zhang M; Zuo P; Ye BC
    Analyst; 2011 Aug; 136(16):3289-94. PubMed ID: 21743915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual detection of melamine in infant formula at 0.1 ppm level based on silver nanoparticles.
    Han C; Li H
    Analyst; 2010 Mar; 135(3):583-8. PubMed ID: 20174714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blue-to-red colorimetric sensing strategy for Hg²⁺ and Ag⁺ via redox-regulated surface chemistry of gold nanoparticles.
    Lou T; Chen Z; Wang Y; Chen L
    ACS Appl Mater Interfaces; 2011 May; 3(5):1568-73. PubMed ID: 21469714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An unusual red-to-brown colorimetric sensing method for ultrasensitive silver(I) ion detection based on a non-aggregation of hyperbranched polyethylenimine derivative stabilized gold nanoparticles.
    Liu Y; Liu Y; Li Z; Liu J; Xu L; Liu X
    Analyst; 2015 Aug; 140(15):5335-43. PubMed ID: 26079979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A label-free colorimetric detection of lead ions by controlling the ligand shells of gold nanoparticles.
    Hung YL; Hsiung TM; Chen YY; Huang CC
    Talanta; 2010 Jul; 82(2):516-22. PubMed ID: 20602929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA based gold nanoparticles colorimetric sensors for sensitive and selective detection of Ag(I) ions.
    Li B; Du Y; Dong S
    Anal Chim Acta; 2009 Jun; 644(1-2):78-82. PubMed ID: 19463566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple green route to prepare stable silver nanoparticles with pear juice and a new selective colorimetric method for detection of cysteine.
    Huang JT; Yang XX; Zeng QL; Wang J
    Analyst; 2013 Sep; 138(18):5296-302. PubMed ID: 23869382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultratrace Naked-Eye Colorimetric Ratio Assay of Chromium(III) Ion in Aqueous Solution via Stimuli-Responsive Morphological Transformation of Silver Nanoflakes.
    Li X; Zhang S; Dang Y; Liu Z; Zhang Z; Shan D; Zhang X; Wang T; Lu X
    Anal Chem; 2019 Mar; 91(6):4031-4038. PubMed ID: 30802033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-signal fenamithion probe by combining fluorescence with colorimetry based on Rhodamine B modified silver nanoparticles.
    Cui Z; Han C; Li H
    Analyst; 2011 Apr; 136(7):1351-6. PubMed ID: 21305084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. l-Cysteine modified silver nanoparticles-based colorimetric sensing for the sensitive determination of Hg
    Fan P; He S; Cheng J; Hu C; Liu C; Yang S; Liu J
    Luminescence; 2021 May; 36(3):698-704. PubMed ID: 33270343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. L-cysteine protected copper nanoparticles as colorimetric sensor for mercuric ions.
    Soomro RA; Nafady A; Sirajuddin ; Memon N; Sherazi TH; Kalwar NH
    Talanta; 2014 Dec; 130():415-22. PubMed ID: 25159429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virgin silver nanoparticles as colorimetric nanoprobe for simultaneous detection of iodide and bromide ion in aqueous medium.
    Bothra S; Kumar R; Pati RK; Kuwar A; Choi HJ; Sahoo SK
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():122-6. PubMed ID: 25950637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silver nanoprobe for sensitive and selective colorimetric detection of dopamine via robust Ag-catechol interaction.
    Lin Y; Chen C; Wang C; Pu F; Ren J; Qu X
    Chem Commun (Camb); 2011 Jan; 47(4):1181-3. PubMed ID: 21082144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly sensitive and selective colorimetric sensing of Hg2+ based on the morphology transition of silver nanoprisms.
    Chen L; Fu X; Lu W; Chen L
    ACS Appl Mater Interfaces; 2013 Jan; 5(2):284-90. PubMed ID: 23237272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.