These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 21645823)
1. Surfome analysis of a wild-type wine Saccharomyces cerevisiae strain. Braconi D; Amato L; Bernardini G; Arena S; Orlandini M; Scaloni A; Santucci A Food Microbiol; 2011 Sep; 28(6):1220-30. PubMed ID: 21645823 [TBL] [Abstract][Full Text] [Related]
2. Proteomic characterization of a wild-type wine strain of Saccharomyces cerevisiae. Trabalzini L; Paffetti A; Ferro E; Scaloni A; Talamo F; Millucci L; Martelli P; Santucci A Ital J Biochem; 2003 Dec; 52(4):145-53. PubMed ID: 15141481 [TBL] [Abstract][Full Text] [Related]
3. Characterisation of hybrid yeasts for the production of varietal Sauvignon blanc wine - A review. Hart RS; Jolly NP; Ndimba BK J Microbiol Methods; 2019 Oct; 165():105699. PubMed ID: 31446037 [TBL] [Abstract][Full Text] [Related]
4. Flocculation and transcriptional adaptation to fermentation conditions in a recombinant wine yeast strain defective for KNR4/SMI1. Penacho V; Blondin B; Valero E; Gonzalez R Biotechnol Prog; 2012; 28(2):327-36. PubMed ID: 22065482 [TBL] [Abstract][Full Text] [Related]
6. Stuck at work? Quantitative proteomics of environmental wine yeast strains reveals the natural mechanism of overcoming stuck fermentation. Szopinska A; Christ E; Planchon S; König H; Evers D; Renaut J Proteomics; 2016 Feb; 16(4):593-608. PubMed ID: 26763469 [TBL] [Abstract][Full Text] [Related]
7. Impact of CO Porras-Agüera JA; Moreno-García J; García-Martínez T; Moreno J; Mauricio JC Int J Food Microbiol; 2021 Jun; 348():109226. PubMed ID: 33964807 [TBL] [Abstract][Full Text] [Related]
8. Wine produced from date palm (Phoenix dactylifera L.) fruits using Saccharomyces cerevisiae X01 isolated from Nigerian locally fermented beverages. Oladoja EO; Oyewole OA; Okeke SK; Azuh VO; Oladoja OI; Jagaba A Arch Microbiol; 2021 Jan; 203(1):193-204. PubMed ID: 32803346 [TBL] [Abstract][Full Text] [Related]
9. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Comitini F; Gobbi M; Domizio P; Romani C; Lencioni L; Mannazzu I; Ciani M Food Microbiol; 2011 Aug; 28(5):873-82. PubMed ID: 21569929 [TBL] [Abstract][Full Text] [Related]
10. Effects of yeast cell-wall characteristics on 4-ethylphenol sorption capacity in model wine. Pradelles R; Alexandre H; Ortiz-Julien A; Chassagne D J Agric Food Chem; 2008 Dec; 56(24):11854-61. PubMed ID: 19053375 [TBL] [Abstract][Full Text] [Related]
11. Genomics and Biochemistry of Saccharomyces cerevisiae Wine Yeast Strains. Eldarov MA; Kishkovskaia SA; Tanaschuk TN; Mardanov AV Biochemistry (Mosc); 2016 Dec; 81(13):1650-1668. PubMed ID: 28260488 [TBL] [Abstract][Full Text] [Related]
12. Anthocyanin adsorption by Saccharomyces cerevisiae during wine fermentation is associated to the loss of yeast cell wall/membrane integrity. Echeverrigaray S; Scariot FJ; Menegotto M; Delamare APL Int J Food Microbiol; 2020 Feb; 314():108383. PubMed ID: 31698283 [TBL] [Abstract][Full Text] [Related]
13. Yeast strain affects phenolic concentration in Pinot noir wines made by microwave maceration with early pressing. Carew AL; Close DC; Dambergs RG J Appl Microbiol; 2015 Jun; 118(6):1385-94. PubMed ID: 25728037 [TBL] [Abstract][Full Text] [Related]
14. Patagonian wines: implantation of an indigenous strain of Saccharomyces cerevisiae in fermentations conducted in traditional and modern cellars. Lopes CA; Rodríguez ME; Sangorrín M; Querol A; Caballero AC J Ind Microbiol Biotechnol; 2007 Feb; 34(2):139-49. PubMed ID: 17008994 [TBL] [Abstract][Full Text] [Related]
15. A recombinant Saccharomyces cerevisiae strain overproducing mannoproteins stabilizes wine against protein haze. Gonzalez-Ramos D; Cebollero E; Gonzalez R Appl Environ Microbiol; 2008 Sep; 74(17):5533-40. PubMed ID: 18606802 [TBL] [Abstract][Full Text] [Related]
16. The proteome of a wine yeast strain during fermentation, correlation with the transcriptome. Rossignol T; Kobi D; Jacquet-Gutfreund L; Blondin B J Appl Microbiol; 2009 Jul; 107(1):47-55. PubMed ID: 19245406 [TBL] [Abstract][Full Text] [Related]
17. Isolation and molecular identification for autochthonous starter Saccharomyces cerevisiae with low biogenic amine synthesis for black raspberry (Rubus coreanus Miquel) wine fermentation. Song NE; Lee CM; Baik SH J Gen Appl Microbiol; 2019 Sep; 65(4):188-196. PubMed ID: 30773526 [TBL] [Abstract][Full Text] [Related]
18. A new methodology to obtain wine yeast strains overproducing mannoproteins. Quirós M; Gonzalez-Ramos D; Tabera L; Gonzalez R Int J Food Microbiol; 2010 Apr; 139(1-2):9-14. PubMed ID: 20219260 [TBL] [Abstract][Full Text] [Related]
19. Revealing the yeast modulation potential on amino acid composition and volatile profile of Arinto white wines by a combined chromatographic-based approach. Pereira C; Mendes D; Dias T; Garcia R; da Silva MG; Cabrita MJ J Chromatogr A; 2021 Mar; 1641():461991. PubMed ID: 33640805 [TBL] [Abstract][Full Text] [Related]
20. Use of Commercial Dry Yeast Products Rich in Mannoproteins for White and Rosé Sparkling Wine Elaboration. Pérez-Magariño S; Martínez-Lapuente L; Bueno-Herrera M; Ortega-Heras M; Guadalupe Z; Ayestarán B J Agric Food Chem; 2015 Jun; 63(23):5670-81. PubMed ID: 26027899 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]