These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 21645851)

  • 1. Structural basis for catalytic activation of a serine recombinase.
    Keenholtz RA; Rowland SJ; Boocock MR; Stark WM; Rice PA
    Structure; 2011 Jun; 19(6):799-809. PubMed ID: 21645851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulatory mutations in Sin recombinase support a structure-based model of the synaptosome.
    Rowland SJ; Boocock MR; McPherson AL; Mouw KW; Rice PA; Stark WM
    Mol Microbiol; 2009 Oct; 74(2):282-98. PubMed ID: 19508283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Architecture of a serine recombinase-DNA regulatory complex.
    Mouw KW; Rowland SJ; Gajjar MM; Boocock MR; Stark WM; Rice PA
    Mol Cell; 2008 Apr; 30(2):145-55. PubMed ID: 18439894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Snapshots of a molecular swivel in action.
    Trejo CS; Rock RS; Stark WM; Boocock MR; Rice PA
    Nucleic Acids Res; 2018 Jun; 46(10):5286-5296. PubMed ID: 29315406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Sin recombinase by accessory proteins.
    Rowland SJ; Boocock MR; Stark WM
    Mol Microbiol; 2005 Apr; 56(2):371-82. PubMed ID: 15813731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling tetramer formation, subunit rotation and DNA ligation during Hin-catalyzed DNA inversion.
    Chang Y; Johnson RC
    Nucleic Acids Res; 2015 Jul; 43(13):6459-72. PubMed ID: 26056171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple interfaces between a serine recombinase and an enhancer control site-specific DNA inversion.
    McLean MM; Chang Y; Dhar G; Heiss JK; Johnson RC
    Elife; 2013 Oct; 2():e01211. PubMed ID: 24151546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing the importance of the biotin carboxylase domain dimer for Staphylococcus aureus pyruvate carboxylase catalysis.
    Yu LP; Chou CY; Choi PH; Tong L
    Biochemistry; 2013 Jan; 52(3):488-96. PubMed ID: 23286247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermediates in serine recombinase-mediated site-specific recombination.
    Marshall Stark W; Boocock MR; Olorunniji FJ; Rowland SJ
    Biochem Soc Trans; 2011 Apr; 39(2):617-22. PubMed ID: 21428950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of the site-specific recombinase, XerD.
    Subramanya HS; Arciszewska LK; Baker RA; Bird LE; Sherratt DJ; Wigley DB
    EMBO J; 1997 Sep; 16(17):5178-87. PubMed ID: 9311978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sin recombinase from Staphylococcus aureus: synaptic complex architecture and transposon targeting.
    Rowland SJ; Stark WM; Boocock MR
    Mol Microbiol; 2002 May; 44(3):607-19. PubMed ID: 11994145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of inorganic pyrophosphatase from Staphylococcus aureus reveals conformational flexibility of the active site.
    Gajadeera CS; Zhang X; Wei Y; Tsodikov OV
    J Struct Biol; 2015 Feb; 189(2):81-6. PubMed ID: 25576794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of a Flp recombinase-Holliday junction complex: assembly of an active oligomer by helix swapping.
    Chen Y; Narendra U; Iype LE; Cox MM; Rice PA
    Mol Cell; 2000 Oct; 6(4):885-97. PubMed ID: 11090626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting the high-resolution crystal structure of Staphylococcus aureus MenH to gain insight into enzyme activity.
    Dawson A; Fyfe PK; Gillet F; Hunter WN
    BMC Struct Biol; 2011 Apr; 11():19. PubMed ID: 21513522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activating mutations of Tn3 resolvase marking interfaces important in recombination catalysis and its regulation.
    Burke ME; Arnold PH; He J; Wenwieser SV; Rowland SJ; Boocock MR; Stark WM
    Mol Microbiol; 2004 Feb; 51(4):937-48. PubMed ID: 14763971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and dynamic requirements for optimal activity of the essential bacterial enzyme dihydrodipicolinate synthase.
    Reboul CF; Porebski BT; Griffin MD; Dobson RC; Perugini MA; Gerrard JA; Buckle AM
    PLoS Comput Biol; 2012; 8(6):e1002537. PubMed ID: 22685390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled rotation mechanism of DNA strand exchange by the Hin serine recombinase.
    Xiao B; McLean MM; Lei X; Marko JF; Johnson RC
    Sci Rep; 2016 Apr; 6():23697. PubMed ID: 27032966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tetrameric structure of a serine integrase catalytic domain.
    Yuan P; Gupta K; Van Duyne GD
    Structure; 2008 Aug; 16(8):1275-86. PubMed ID: 18682229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of a synaptic gammadelta resolvase tetramer covalently linked to two cleaved DNAs.
    Li W; Kamtekar S; Xiong Y; Sarkis GJ; Grindley ND; Steitz TA
    Science; 2005 Aug; 309(5738):1210-5. PubMed ID: 15994378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural plasticity of the Flp-Holliday junction complex.
    Conway AB; Chen Y; Rice PA
    J Mol Biol; 2003 Feb; 326(2):425-34. PubMed ID: 12559911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.