BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 21645884)

  • 1. Synthesis and characterization of poly-O-methyl-[n]-polyurethane from a d-glucamine-based monomer.
    Kolender AA; Arce SM; Varela O
    Carbohydr Res; 2011 Sep; 346(12):1398-405. PubMed ID: 21645884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymers from amino acids: development of dual ester-urethane melt condensation approach and mechanistic aspects.
    Anantharaj S; Jayakannan M
    Biomacromolecules; 2012 Aug; 13(8):2446-55. PubMed ID: 22713137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemoenzymatic synthesis and chemical recycling of sustainable polyurethanes.
    Yanagishita Y; Kato M; Toshima K; Matsumura S
    ChemSusChem; 2008; 1(1-2):133-42. PubMed ID: 18605676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocatalytic fabrication of fast-degradable, water-soluble polycarbonate functionalized with tertiary amine groups in backbone.
    Wang HF; Su W; Zhang C; Luo XH; Feng J
    Biomacromolecules; 2010 Oct; 11(10):2550-7. PubMed ID: 20836520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Permeability of dye through poly(urea-urethane) microcapsule membrane prepared from mixtures of di- and tri-isocyanate.
    Chang CP; Chang JC; Ichikawa K; Dobashi T
    Colloids Surf B Biointerfaces; 2005 Sep; 44(4):187-90. PubMed ID: 16081257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isocyanate- and phosgene-free routes to polyfunctional cyclic carbonates and green polyurethanes by fixation of carbon dioxide.
    Blattmann H; Fleischer M; Bähr M; Mülhaupt R
    Macromol Rapid Commun; 2014 Jul; 35(14):1238-54. PubMed ID: 24979310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of biobased polyurethane from oleic and ricinoleic acids as the renewable resources via the AB-type self-condensation approach.
    Palaskar DV; Boyer A; Cloutet E; Alfos C; Cramail H
    Biomacromolecules; 2010 May; 11(5):1202-11. PubMed ID: 20402498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic synthesis and chemical recycling of poly(carbonate-urethane).
    Soeda Y; Toshima K; Matsumura S
    Macromol Biosci; 2004 Aug; 4(8):721-8. PubMed ID: 15468266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [n]-Polyurethanes: Synthesis and Characterization.
    Versteegen RM; Sijbesma RP; Meijer EW
    Angew Chem Int Ed Engl; 1999 Oct; 38(19):2917-2919. PubMed ID: 10540392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation.
    Tatai L; Moore TG; Adhikari R; Malherbe F; Jayasekara R; Griffiths I; Gunatillake PA
    Biomaterials; 2007 Dec; 28(36):5407-17. PubMed ID: 17915310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemoenzymatic synthesis and chemical recycling of poly(ester-urethane)s.
    Hayashi H; Yanagishita Y; Matsumura S
    Int J Mol Sci; 2011; 12(9):5490-507. PubMed ID: 22016604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, characterizations and biocompatibility of alternating block polyurethanes based on P3/4HB and PPG-PEG-PPG.
    Li G; Li P; Qiu H; Li D; Su M; Xu K
    J Biomed Mater Res A; 2011 Jul; 98(1):88-99. PubMed ID: 21538829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and antiproliferative and antiviral activity of carbohydrate-modified pyrrolo[2,3-d]pyridazin-7-one nucleosides.
    Meade EA; Wotring LL; Drach JC; Townsend LB
    J Med Chem; 1997 Feb; 40(5):794-801. PubMed ID: 9057866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, characterization and biocompatibility of biodegradable elastomeric poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via melting polymerization.
    Li Z; Yang X; Wu L; Chen Z; Lin Y; Xu K; Chen GQ
    J Biomater Sci Polym Ed; 2009; 20(9):1179-202. PubMed ID: 19520007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neoglycopolymers based on 4-vinyl-1,2,3-triazole monomers prepared by click chemistry.
    Hetzer M; Chen G; Barner-Kowollik C; Stenzel MH
    Macromol Biosci; 2010 Feb; 10(2):119-26. PubMed ID: 19731270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel biodegradable aliphatic poly(butylene succinate-co-cyclic carbonate)s with functional carbonate building blocks. 1. Chemical synthesis and their structural and physical characterization.
    Yang J; Hao Q; Liu X; Ba C; Cao A
    Biomacromolecules; 2004; 5(1):209-18. PubMed ID: 14715028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Matrix-assisted ultraviolet laser desorption/ionization time-of-flight (UV-MALDI-TOF) mass spectra of N-acylated and N,O-acylated glycosylamines.
    Sato Y; Fukuyama Y; Nonami H; Erra-Balsells R; Stortz CA; Cerezo AS; Matulewicz MC
    Carbohydr Res; 2007 Dec; 342(17):2567-74. PubMed ID: 17822685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bio-based aliphatic polyurethanes through ADMET polymerization in bulk and green solvent.
    Lebarbé T; More AS; Sane PS; Grau E; Alfos C; Cramail H
    Macromol Rapid Commun; 2014 Feb; 35(4):479-83. PubMed ID: 24339353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid synthesis of new block copolyurethanes derived from L-leucine cyclodipeptide in reusable molten ammonium salts: novel and efficient green media for the synthesis of new hydrolysable and biodegradable copolyurethanes.
    Rafiemanzelat F; Abdollahi E
    Amino Acids; 2012 Jun; 42(6):2177-86. PubMed ID: 21706232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved method for the synthesis of 2-alkylamino-2-deoxy-d-glucopyranose and 1,2-dialkylamino-1,2-dideoxy-d-(N)-beta-glucoside.
    Piispanen PS; Norin T
    J Org Chem; 2003 Jan; 68(2):628-30. PubMed ID: 12530898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.