These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
81 related articles for article (PubMed ID: 21645939)
1. Metabolomes of the psychrotolerant bacterium Listeria monocytogenes 10403S grown at 37 °C and 8 °C. Singh AK; Ulanov AV; Li Z; Jayaswal RK; Wilkinson BJ Int J Food Microbiol; 2011 Aug; 148(2):107-14. PubMed ID: 21645939 [TBL] [Abstract][Full Text] [Related]
2. Role of the glycine betaine and carnitine transporters in adaptation of Listeria monocytogenes to chill stress in defined medium. Angelidis AS; Smith GM Appl Environ Microbiol; 2003 Dec; 69(12):7492-8. PubMed ID: 14660402 [TBL] [Abstract][Full Text] [Related]
3. Elevated carnitine accumulation by Listeria monocytogenes impaired in glycine betaine transport is insufficient to restore wild-type cryotolerance in milk whey. Angelidis AS; Smith LT; Smith GM Int J Food Microbiol; 2002 May; 75(1-2):1-9. PubMed ID: 11999105 [TBL] [Abstract][Full Text] [Related]
4. Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Annous BA; Becker LA; Bayles DO; Labeda DP; Wilkinson BJ Appl Environ Microbiol; 1997 Oct; 63(10):3887-94. PubMed ID: 9327552 [TBL] [Abstract][Full Text] [Related]
5. Molecular analysis of the role of osmolyte transporters opuCA and betL in Listeria monocytogenes after cold and freezing stress. Miladi H; Elabed H; Ben Slama R; Rhim A; Bakhrouf A Arch Microbiol; 2017 Mar; 199(2):259-265. PubMed ID: 27695911 [TBL] [Abstract][Full Text] [Related]
6. Electron paramagnetic resonance studies of the membrane fluidity of the foodborne pathogenic psychrotroph Listeria monocytogenes. Edgcomb MR; Sirimanne S; Wilkinson BJ; Drouin P; Morse RD Biochim Biophys Acta; 2000 Jan; 1463(1):31-42. PubMed ID: 10631292 [TBL] [Abstract][Full Text] [Related]
7. Osmoprotectants and cryoprotectants for Listeria monocytogenes. Bayles DO; Wilkinson BJ Lett Appl Microbiol; 2000 Jan; 30(1):23-7. PubMed ID: 10728555 [TBL] [Abstract][Full Text] [Related]
8. Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes. Ko R; Smith LT; Smith GM J Bacteriol; 1994 Jan; 176(2):426-31. PubMed ID: 8288538 [TBL] [Abstract][Full Text] [Related]
9. Increased Isoprenoid Quinone Concentration Modulates Membrane Fluidity in Listeria monocytogenes at Low Growth Temperatures. Seel W; Flegler A; Zunabovic-Pichler M; Lipski A J Bacteriol; 2018 Jul; 200(13):. PubMed ID: 29661862 [No Abstract] [Full Text] [Related]
10. Correlation of long-range membrane order with temperature-dependent growth characteristics of parent and a cold-sensitive, branched-chain-fatty-acid-deficient mutant of Listeria monocytogenes. Jones SL; Drouin P; Wilkinson BJ; II Morse PD Arch Microbiol; 2002 Mar; 177(3):217-22. PubMed ID: 11907677 [TBL] [Abstract][Full Text] [Related]
11. Role of osmolytes in adaptation of osmotically stressed and chill-stressed Listeria monocytogenes grown in liquid media and on processed meat surfaces. Smith LT Appl Environ Microbiol; 1996 Sep; 62(9):3088-93. PubMed ID: 8795194 [TBL] [Abstract][Full Text] [Related]
12. Cold stress proteins induced in Listeria monocytogenes in response to temperature downshock and growth at low temperatures. Bayles DO; Annous BA; Wilkinson BJ Appl Environ Microbiol; 1996 Mar; 62(3):1116-9. PubMed ID: 8975605 [TBL] [Abstract][Full Text] [Related]
13. Influence of temperature on acid-stress adaptation in Listeria monocytogenes. Shen Q; Soni KA; Nannapaneni R Foodborne Pathog Dis; 2014 Jan; 11(1):43-9. PubMed ID: 24102079 [TBL] [Abstract][Full Text] [Related]
14. Molecular and physiological analysis of the role of osmolyte transporters BetL, Gbu, and OpuC in growth of Listeria monocytogenes at low temperatures. Wemekamp-Kamphuis HH; Sleator RD; Wouters JA; Hill C; Abee T Appl Environ Microbiol; 2004 May; 70(5):2912-8. PubMed ID: 15128551 [TBL] [Abstract][Full Text] [Related]
16. Identification of opuC as a chill-activated and osmotically activated carnitine transporter in Listeria monocytogenes. Angelidis AS; Smith LT; Hoffman LM; Smith GM Appl Environ Microbiol; 2002 Jun; 68(6):2644-50. PubMed ID: 12039715 [TBL] [Abstract][Full Text] [Related]
17. Menaquinone-mediated regulation of membrane fluidity is relevant for fitness of Listeria monocytogenes. Flegler A; Kombeitz V; Lipski A Arch Microbiol; 2021 Aug; 203(6):3353-3360. PubMed ID: 33871675 [TBL] [Abstract][Full Text] [Related]
18. Comparative analysis of the exoproteomes of Listeria monocytogenes strains grown at low temperatures. Cabrita P; Batista S; Machado H; Moes S; Jenö P; Manadas B; Trigo MJ; Monteiro S; Ferreira RB; Brito L Foodborne Pathog Dis; 2013 May; 10(5):428-34. PubMed ID: 23531123 [TBL] [Abstract][Full Text] [Related]
19. Effect of cold temperature on the composition of different lipid classes of the foodborne pathogen Listeria monocytogenes: focus on neutral lipids. Mastronicolis SK; Boura A; Karaliota A; Magiatis P; Arvanitis N; Litos C; Tsakirakis A; Paraskevas P; Moustaka H; Heropoulos G Food Microbiol; 2006 Apr; 23(2):184-94. PubMed ID: 16943003 [TBL] [Abstract][Full Text] [Related]
20. Synergistic effect of copper and low temperature over Listeria monocytogenes. Latorre M; Quesille-Villalobos AM; Maza F; Parra A; Reyes-Jara A Biometals; 2015 Dec; 28(6):1087-92. PubMed ID: 26515293 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]