These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 21646012)

  • 1. Sound localization: Jeffress and beyond.
    Ashida G; Carr CE
    Curr Opin Neurobiol; 2011 Oct; 21(5):745-51. PubMed ID: 21646012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Change in the coding of interaural time difference along the tonotopic axis of the chicken nucleus laminaris.
    Palanca-Castan N; Köppl C
    Front Neural Circuits; 2015; 9():43. PubMed ID: 26347616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural sensitivity to interaural time differences: beyond the Jeffress model.
    Fitzpatrick DC; Kuwada S; Batra R
    J Neurosci; 2000 Feb; 20(4):1605-15. PubMed ID: 10662850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The modulation by intensity of the processing of interaural timing cues for localizing sounds.
    Nishino E; Ohmori H
    Mol Neurobiol; 2009 Oct; 40(2):157-65. PubMed ID: 19593674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow Temporal Integration Enables Robust Neural Coding and Perception of a Cue to Sound Source Location.
    Brown AD; Tollin DJ
    J Neurosci; 2016 Sep; 36(38):9908-21. PubMed ID: 27656028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transformations in processing interaural time differences between the superior olivary complex and inferior colliculus: beyond the Jeffress model.
    Fitzpatrick DC; Kuwada S; Batra R
    Hear Res; 2002 Jun; 168(1-2):79-89. PubMed ID: 12117511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural Processing of Acoustic and Electric Interaural Time Differences in Normal-Hearing Gerbils.
    Vollmer M
    J Neurosci; 2018 Aug; 38(31):6949-6966. PubMed ID: 29959238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaural time difference processing in the mammalian medial superior olive: the role of glycinergic inhibition.
    Pecka M; Brand A; Behrend O; Grothe B
    J Neurosci; 2008 Jul; 28(27):6914-25. PubMed ID: 18596166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creating a sense of auditory space.
    McAlpine D
    J Physiol; 2005 Jul; 566(Pt 1):21-8. PubMed ID: 15760940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Test of the Stereausis Hypothesis for Sound Localization in Mammals.
    Plauška A; van der Heijden M; Borst JGG
    J Neurosci; 2017 Jul; 37(30):7278-7289. PubMed ID: 28659280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms for adjusting interaural time differences to achieve binaural coincidence detection.
    Seidl AH; Rubel EW; Harris DM
    J Neurosci; 2010 Jan; 30(1):70-80. PubMed ID: 20053889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of interaural time differences in the alligator.
    Carr CE; Soares D; Smolders J; Simon JZ
    J Neurosci; 2009 Jun; 29(25):7978-90. PubMed ID: 19553438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of inhibitory synaptic kinetics on the interaural time difference sensitivity in a linear model of binaural coincidence detection.
    Leibold C
    J Acoust Soc Am; 2010 Feb; 127(2):931-942. PubMed ID: 20136216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal specializations for the processing of interaural difference cues in the chick.
    Ohmori H
    Front Neural Circuits; 2014; 8():47. PubMed ID: 24847212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Envelope coding in the lateral superior olive. II. Characteristic delays and comparison with responses in the medial superior olive.
    Joris PX
    J Neurophysiol; 1996 Oct; 76(4):2137-56. PubMed ID: 8899590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of GABAergic inhibition in the coding of interaural time differences of low-frequency sounds in the inferior colliculus.
    D'Angelo WR; Sterbing SJ; Ostapoff EM; Kuwada S
    J Neurophysiol; 2005 Jun; 93(6):3390-400. PubMed ID: 15647399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bilateral matching of frequency tuning in neural cross-correlators of the owl.
    Fischer BJ; Peña JL
    Biol Cybern; 2009 Jun; 100(6):521-31. PubMed ID: 19396457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. When and how envelope "rate-limitations" affect processing of interaural temporal disparities conveyed by high-frequency stimuli.
    Bernstein LR; Trahiotis C
    Adv Exp Med Biol; 2013; 787():263-71. PubMed ID: 23716232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-correlation in the auditory coincidence detectors of owls.
    Fischer BJ; Christianson GB; Peña JL
    J Neurosci; 2008 Aug; 28(32):8107-15. PubMed ID: 18685035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Representation of Interaural Time Differences in High-Frequency Auditory Cortex.
    Moshitch D; Nelken I
    Cereb Cortex; 2016 Feb; 26(2):656-68. PubMed ID: 25260704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.