BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 21646398)

  • 1. Normobaric hypoxia impairs human cardiac energetics.
    Holloway C; Cochlin L; Codreanu I; Bloch E; Fatemian M; Szmigielski C; Atherton H; Heather L; Francis J; Neubauer S; Robbins P; Montgomery H; Clarke K
    FASEB J; 2011 Sep; 25(9):3130-5. PubMed ID: 21646398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiac response to hypobaric hypoxia: persistent changes in cardiac mass, function, and energy metabolism after a trek to Mt. Everest Base Camp.
    Holloway CJ; Montgomery HE; Murray AJ; Cochlin LE; Codreanu I; Hopwood N; Johnson AW; Rider OJ; Levett DZ; Tyler DJ; Francis JM; Neubauer S; Grocott MP; Clarke K;
    FASEB J; 2011 Feb; 25(2):792-6. PubMed ID: 20978235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relation of myocardial oxygen consumption and function to high energy phosphate utilization during graded hypoxia and reoxygenation in sheep in vivo.
    Portman MA; Standaert TA; Ning XH
    J Clin Invest; 1995 May; 95(5):2134-42. PubMed ID: 7738181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced sensitivity to hypoxia-induced diastolic dysfunction in pressure-overload left ventricular hypertrophy in the rat: role of high-energy phosphate depletion.
    Wexler LF; Lorell BH; Momomura S; Weinberg EO; Ingwall JS; Apstein CS
    Circ Res; 1988 Apr; 62(4):766-75. PubMed ID: 2964946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation to chronic hypoxia alters cardiac metabolic response to beta stimulation: novel face of phosphocreatine overshoot phenomenon.
    Novel-Chaté V; Aussedat J; Saks VA; Rossi A
    J Mol Cell Cardiol; 1995 Aug; 27(8):1679-87. PubMed ID: 8523430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved energy supply regulation in chronic hypoxic mouse counteracts hypoxia-induced altered cardiac energetics.
    Calmettes G; Deschodt-Arsac V; Gouspillou G; Miraux S; Muller B; Franconi JM; Thiaudiere E; Diolez P
    PLoS One; 2010 Feb; 5(2):e9306. PubMed ID: 20174637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation of cardiac performance with cellular energetic components in the oxygen-deprived turtle heart.
    Stecyk JA; Bock C; Overgaard J; Wang T; Farrell AP; Pörtner HO
    Am J Physiol Regul Integr Comp Physiol; 2009 Sep; 297(3):R756-68. PubMed ID: 19587113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exercise-induced decrease in myocardial high-energy phosphate metabolites in patients with Chagas heart disease.
    Betim Paes Leme AM; Salemi VM; Weiss RG; Parga JR; Ianni BM; Mady C; Kalil-Filho R
    J Card Fail; 2013 Jul; 19(7):454-60. PubMed ID: 23834921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of hypoxia and aging in the heart: analysis of high energy phosphate content.
    Bak MI; Wei JY; Ingwall JS
    J Mol Cell Cardiol; 1998 Mar; 30(3):661-72. PubMed ID: 9515041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Verapamil attenuates ATP depletion during hypoxia: 31P NMR studies of the isolated rat heart.
    Neubauer S; Ingwall JS
    J Mol Cell Cardiol; 1989 Nov; 21(11):1163-78. PubMed ID: 2607547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modular control analysis of effects of chronic hypoxia on mouse heart.
    Calmettes G; Deschodt-Arsac V; Thiaudière E; Muller B; Diolez P
    Am J Physiol Regul Integr Comp Physiol; 2008 Dec; 295(6):R1891-7. PubMed ID: 18832083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous Normobaric Hypoxia Improved Cardiac Bioenergetics after Ischemia/Reperfusion: Role of Opioid Receptors.
    Prokudina ES; Naryzhnaya NV; Nesterov EA; Tsibulnikov SY; Maslov LN
    Bull Exp Biol Med; 2020 May; 169(1):13-17. PubMed ID: 32474669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possible mechanisms for reoxygenation-induced recovery of myocardial high-energy phosphates after hypoxia.
    Takeo S; Sakanashi M
    J Mol Cell Cardiol; 1983 Sep; 15(9):577-94. PubMed ID: 6631971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiac high-energy phosphate metabolism in patients with aortic valve disease assessed by 31P-magnetic resonance spectroscopy.
    Neubauer S; Horn M; Pabst T; Harre K; Strömer H; Bertsch G; Sandstede J; Ertl G; Hahn D; Kochsiek K
    J Investig Med; 1997 Oct; 45(8):453-62. PubMed ID: 9394098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased tolerance of ventricular function and energy metabolism to hypoxia in cardiomyopathic hamsters.
    Momomura S; Nagai Y; Ogawa T; Bessho M; Yamashita H; Serizawa T
    J Mol Cell Cardiol; 1993 May; 25(5):551-62. PubMed ID: 8377215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiorespiratory Response and Power Output During Submaximal Exercise in Normobaric Versus Hypobaric Hypoxia: A Pilot Study Using a Specific Chamber that Controls Environmental Factors.
    Takezawa T; Dobashi S; Koyama K
    High Alt Med Biol; 2021 Jun; 22(2):201-208. PubMed ID: 33599547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of accumulation of sodium and calcium on contractile failure of the hypoxic/reoxygenated heart.
    Tanonaka K; Niwa T; Takeo S
    Jpn Heart J; 1996 Jan; 37(1):105-17. PubMed ID: 8632618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered Oxygen Utilisation in Rat Left Ventricle and Soleus after 14 Days, but Not 2 Days, of Environmental Hypoxia.
    Horscroft JA; Burgess SL; Hu Y; Murray AJ
    PLoS One; 2015; 10(9):e0138564. PubMed ID: 26390043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effects of Sex on Cardiopulmonary Responses to Acute Normobaric Hypoxia.
    Boos CJ; Mellor A; O'Hara JP; Tsakirides C; Woods DR
    High Alt Med Biol; 2016 Jun; 17(2):108-15. PubMed ID: 27008376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Function and bioenergetics in isolated perfused trained rat hearts.
    Spencer RG; Buttrick PM; Ingwall JS
    Am J Physiol; 1997 Jan; 272(1 Pt 2):H409-17. PubMed ID: 9038963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.