BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 21646535)

  • 41. Transcriptional regulation of the yeast PHO8 promoter in comparison to the coregulated PHO5 promoter.
    Munsterkötter M; Barbaric S; Hörz W
    J Biol Chem; 2000 Jul; 275(30):22678-85. PubMed ID: 10801809
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural and functional requirements for the chromatin transition at the PHO5 promoter in Saccharomyces cerevisiae upon PHO5 activation.
    Fascher KD; Schmitz J; Hörz W
    J Mol Biol; 1993 Jun; 231(3):658-67. PubMed ID: 8515443
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sequence-targeted nucleosome sliding in vivo by a hybrid Chd1 chromatin remodeler.
    McKnight JN; Tsukiyama T; Bowman GD
    Genome Res; 2016 May; 26(5):693-704. PubMed ID: 26993344
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nucleosome disruption at the yeast PHO5 promoter upon PHO5 induction occurs in the absence of DNA replication.
    Schmid A; Fascher KD; Hörz W
    Cell; 1992 Nov; 71(5):853-64. PubMed ID: 1423633
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Remodeling of yeast CUP1 chromatin involves activator-dependent repositioning of nucleosomes over the entire gene and flanking sequences.
    Shen CH; Leblanc BP; Alfieri JA; Clark DJ
    Mol Cell Biol; 2001 Jan; 21(2):534-47. PubMed ID: 11134341
    [TBL] [Abstract][Full Text] [Related]  

  • 46. DNA Topoisomerases maintain promoters in a state competent for transcriptional activation in Saccharomyces cerevisiae.
    Pedersen JM; Fredsoe J; Roedgaard M; Andreasen L; Mundbjerg K; Kruhøffer M; Brinch M; Schierup MH; Bjergbaek L; Andersen AH
    PLoS Genet; 2012; 8(12):e1003128. PubMed ID: 23284296
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Chd1 chromatin remodeler forms long-lived complexes with nucleosomes in the presence of ADP·BeF
    Ren R; Ghassabi Kondalaji S; Bowman GD
    J Biol Chem; 2019 Nov; 294(48):18181-18191. PubMed ID: 31636125
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Linking stochastic fluctuations in chromatin structure and gene expression.
    Brown CR; Mao C; Falkovskaia E; Jurica MS; Boeger H
    PLoS Biol; 2013; 11(8):e1001621. PubMed ID: 23940458
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chromatin-dependent transcription factor accessibility rather than nucleosome remodeling predominates during global transcriptional restructuring in Saccharomyces cerevisiae.
    Zawadzki KA; Morozov AV; Broach JR
    Mol Biol Cell; 2009 Aug; 20(15):3503-13. PubMed ID: 19494041
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evidence for histone eviction in trans upon induction of the yeast PHO5 promoter.
    Korber P; Luckenbach T; Blaschke D; Hörz W
    Mol Cell Biol; 2004 Dec; 24(24):10965-74. PubMed ID: 15572697
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transcription factors vs nucleosomes: regulation of the PHO5 promoter in yeast.
    Svaren J; Hörz W
    Trends Biochem Sci; 1997 Mar; 22(3):93-7. PubMed ID: 9066259
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mapping protein-DNA and protein-protein interactions of ATP-dependent chromatin remodelers.
    Hota SK; Dechassa ML; Prasad P; Bartholomew B
    Methods Mol Biol; 2012; 809():381-409. PubMed ID: 22113290
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Common chromatin architecture, common chromatin remodeling, and common transcription kinetics of Adr1-dependent genes in Saccharomyces cerevisiae.
    Agricola E; Verdone L; Xella B; Di Mauro E; Caserta M
    Biochemistry; 2004 Jul; 43(27):8878-84. PubMed ID: 15236596
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter.
    Reinke H; Hörz W
    Mol Cell; 2003 Jun; 11(6):1599-607. PubMed ID: 12820972
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Specificity of ATP-dependent chromatin remodeling at the yeast PHO5 promoter.
    Haswell ES; O'Shea EK
    Cold Spring Harb Symp Quant Biol; 1998; 63():563-7. PubMed ID: 10384321
    [No Abstract]   [Full Text] [Related]  

  • 56. ATP-dependent chromatin assembly is functionally distinct from chromatin remodeling.
    Torigoe SE; Patel A; Khuong MT; Bowman GD; Kadonaga JT
    Elife; 2013 Aug; 2():e00863. PubMed ID: 23986862
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rad51 polymerization reveals a new chromatin remodeling mechanism.
    Dupaigne P; Lavelle C; Justome A; Lafosse S; Mirambeau G; Lipinski M; Piétrement O; Le Cam E
    PLoS One; 2008; 3(11):e3643. PubMed ID: 18982066
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chromatin and transcription in yeast.
    Rando OJ; Winston F
    Genetics; 2012 Feb; 190(2):351-87. PubMed ID: 22345607
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Chromatin structure and transcription regulation in Saccharomyces cerevisiae].
    Osipov SA; Preobrazhenskaia OV; Karpov VL
    Mol Biol (Mosk); 2010; 44(6):966-79. PubMed ID: 21290820
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tup1 stabilizes promoter nucleosome positioning and occupancy at transcriptionally plastic genes.
    Rizzo JM; Mieczkowski PA; Buck MJ
    Nucleic Acids Res; 2011 Nov; 39(20):8803-19. PubMed ID: 21785133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.