These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 21647392)
1. Intrasulcal electrocorticography in macaque monkeys with minimally invasive neurosurgical protocols. Matsuo T; Kawasaki K; Osada T; Sawahata H; Suzuki T; Shibata M; Miyakawa N; Nakahara K; Iijima A; Sato N; Kawai K; Saito N; Hasegawa I Front Syst Neurosci; 2011; 5():34. PubMed ID: 21647392 [TBL] [Abstract][Full Text] [Related]
2. An electrocorticographic electrode array for simultaneous recording from medial, lateral, and intrasulcal surface of the cortex in macaque monkeys. Fukushima M; Saunders RC; Mullarkey M; Doyle AM; Mishkin M; Fujii N J Neurosci Methods; 2014 Aug; 233():155-65. PubMed ID: 24972186 [TBL] [Abstract][Full Text] [Related]
3. Neural decoding using gyral and intrasulcal electrocorticograms. Yanagisawa T; Hirata M; Saitoh Y; Kato A; Shibuya D; Kamitani Y; Yoshimine T Neuroimage; 2009 May; 45(4):1099-106. PubMed ID: 19349227 [TBL] [Abstract][Full Text] [Related]
4. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping. Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131 [TBL] [Abstract][Full Text] [Related]
5. Studying brain functions with mesoscopic measurements: Advances in electrocorticography for non-human primates. Fukushima M; Chao ZC; Fujii N Curr Opin Neurobiol; 2015 Jun; 32():124-31. PubMed ID: 25889531 [TBL] [Abstract][Full Text] [Related]
6. High Spatiotemporal Resolution ECoG Recording of Somatosensory Evoked Potentials with Flexible Micro-Electrode Arrays. Kaiju T; Doi K; Yokota M; Watanabe K; Inoue M; Ando H; Takahashi K; Yoshida F; Hirata M; Suzuki T Front Neural Circuits; 2017; 11():20. PubMed ID: 28442997 [TBL] [Abstract][Full Text] [Related]
7. A minimally invasive flexible electrode array for simultaneous recording of ECoG signals from multiple brain regions. Jeong UJ; Lee J; Chou N; Kim K; Shin H; Chae U; Yu HY; Cho IJ Lab Chip; 2021 Jun; 21(12):2383-2397. PubMed ID: 33955442 [TBL] [Abstract][Full Text] [Related]
8. Simultaneous recording of ECoG and intracortical neuronal activity using a flexible multichannel electrode-mesh in visual cortex. Toda H; Suzuki T; Sawahata H; Majima K; Kamitani Y; Hasegawa I Neuroimage; 2011 Jan; 54(1):203-12. PubMed ID: 20696254 [TBL] [Abstract][Full Text] [Related]
9. A novel micro-ECoG recording method for recording multisensory neural activity from the parietal to temporal cortices in mice. Setogawa S; Kanda R; Tada S; Hikima T; Saitoh Y; Ishikawa M; Nakada S; Seki F; Hikishima K; Matsumoto H; Mizuseki K; Fukayama O; Osanai M; Sekiguchi H; Ohkawa N Mol Brain; 2023 May; 16(1):38. PubMed ID: 37138338 [TBL] [Abstract][Full Text] [Related]
10. A novel neural prosthesis providing long-term electrocorticography recording and cortical stimulation for epilepsy and brain-computer interface. Romanelli P; Piangerelli M; Ratel D; Gaude C; Costecalde T; Puttilli C; Picciafuoco M; Benabid A; Torres N J Neurosurg; 2019 Apr; 130(4):1166-1179. PubMed ID: 29749917 [TBL] [Abstract][Full Text] [Related]
11. Intraoperative electrocorticography for physiological research in movement disorders: principles and experience in 200 cases. Panov F; Levin E; de Hemptinne C; Swann NC; Qasim S; Miocinovic S; Ostrem JL; Starr PA J Neurosurg; 2017 Jan; 126(1):122-131. PubMed ID: 26918474 [TBL] [Abstract][Full Text] [Related]
12. An Inkjet Printed Flexible Electrocorticography (ECoG) Microelectrode Array on a Thin Parylene-C Film. Kim Y; Alimperti S; Choi P; Noh M Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35162023 [TBL] [Abstract][Full Text] [Related]
13. Thin-film, high-density micro-electrocorticographic decoding of a human cortical gyrus. Muller L; Felix S; Shah KG; Kye Lee ; Pannu S; Chang EF Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1528-1531. PubMed ID: 28268617 [TBL] [Abstract][Full Text] [Related]
14. Frequency-dependent spatiotemporal profiles of visual responses recorded with subdural ECoG electrodes in awake monkeys: Differences between high- and low-frequency activity. Takaura K; Tsuchiya N; Fujii N Neuroimage; 2016 Jan; 124(Pt A):557-572. PubMed ID: 26363347 [TBL] [Abstract][Full Text] [Related]
15. Multiplexed Surface Electrode Arrays Based on Metal Oxide Thin-Film Electronics for High-Resolution Cortical Mapping. Londoño-Ramírez H; Huang X; Cools J; Chrzanowska A; Brunner C; Ballini M; Hoffman L; Steudel S; Rolin C; Mora Lopez C; Genoe J; Haesler S Adv Sci (Weinh); 2024 Mar; 11(10):e2308507. PubMed ID: 38145348 [TBL] [Abstract][Full Text] [Related]
17. Long-term evaluation and feasibility study of the insulated screw electrode for ECoG recording. Choi H; Lee S; Lee J; Min K; Lim S; Park J; Ahn KH; Kim IY; Lee KM; Jang DP J Neurosci Methods; 2018 Oct; 308():261-268. PubMed ID: 29964082 [TBL] [Abstract][Full Text] [Related]
18. New thin-film surface electrode array enables brain mapping with high spatial acuity in rodents. Konerding WS; Froriep UP; Kral A; Baumhoff P Sci Rep; 2018 Feb; 8(1):3825. PubMed ID: 29491453 [TBL] [Abstract][Full Text] [Related]
19. A convex-shaped, PDMS-parylene hybrid multichannel ECoG-electrode array. Woo-Ram Lee ; Changkyun Im ; Chin Su Koh ; Jun-Min Kim ; Hyung-Cheul Shin ; Jong-Mo Seo Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1093-1096. PubMed ID: 29060065 [TBL] [Abstract][Full Text] [Related]