These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 21647436)

  • 1. The hexameric structures of human heat shock protein 90.
    Lee CC; Lin TW; Ko TP; Wang AH
    PLoS One; 2011; 6(5):e19961. PubMed ID: 21647436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hsp90 is regulated by a switch point in the C-terminal domain.
    Retzlaff M; Stahl M; Eberl HC; Lagleder S; Beck J; Kessler H; Buchner J
    EMBO Rep; 2009 Oct; 10(10):1147-53. PubMed ID: 19696785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamic properties and quaternary structure of the 90 kDa heat-shock protein: effects of divalent cations.
    Garnier C; Barbier P; Devred F; Rivas G; Peyrot V
    Biochemistry; 2002 Oct; 41(39):11770-8. PubMed ID: 12269819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of the key residue W320 responsible for Hsp90 conformational change.
    Peng S; Matts RL; Deng J
    J Biomol Struct Dyn; 2023 Nov; 41(19):9745-9755. PubMed ID: 36373326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissection of the contribution of individual domains to the ATPase mechanism of Hsp90.
    Wegele H; Muschler P; Bunck M; Reinstein J; Buchner J
    J Biol Chem; 2003 Oct; 278(41):39303-10. PubMed ID: 12890674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical and biophysical characterization of the Mg2+-induced 90-kDa heat shock protein oligomers.
    Moullintraffort L; Bruneaux M; Nazabal A; Allegro D; Giudice E; Zal F; Peyrot V; Barbier P; Thomas D; Garnier C
    J Biol Chem; 2010 May; 285(20):15100-15110. PubMed ID: 20228408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery.
    Meyer P; Prodromou C; Liao C; Hu B; Roe SM; Vaughan CK; Vlasic I; Panaretou B; Piper PW; Pearl LH
    EMBO J; 2004 Mar; 23(6):1402-10. PubMed ID: 15039704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hydrophobic segment within the C-terminal domain is essential for both client-binding and dimer formation of the HSP90-family molecular chaperone.
    Yamada S; Ono T; Mizuno A; Nemoto TK
    Eur J Biochem; 2003 Jan; 270(1):146-54. PubMed ID: 12492485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrinsic inhibition of the Hsp90 ATPase activity.
    Richter K; Moser S; Hagn F; Friedrich R; Hainzl O; Heller M; Schlee S; Kessler H; Reinstein J; Buchner J
    J Biol Chem; 2006 Apr; 281(16):11301-11. PubMed ID: 16461354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enforced N-domain proximity stimulates Hsp90 ATPase activity and is compatible with function in vivo.
    Pullen L; Bolon DN
    J Biol Chem; 2011 Apr; 286(13):11091-8. PubMed ID: 21278257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-terminal residues regulate the catalytic efficiency of the Hsp90 ATPase cycle.
    Richter K; Reinstein J; Buchner J
    J Biol Chem; 2002 Nov; 277(47):44905-10. PubMed ID: 12235160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-chaperone regulation of conformational switching in the Hsp90 ATPase cycle.
    Siligardi G; Hu B; Panaretou B; Piper PW; Pearl LH; Prodromou C
    J Biol Chem; 2004 Dec; 279(50):51989-98. PubMed ID: 15466438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hsp90 oligomerization process: How can p23 drive the chaperone machineries?
    Lepvrier E; Nigen M; Moullintraffort L; Chat S; Allegro D; Barbier P; Thomas D; Nazabal A; Garnier C
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1412-24. PubMed ID: 26151834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterization of heat-shock protein 90 from Oryza sativa and crystal structure of its N-terminal domain.
    Raman S; Suguna K
    Acta Crystallogr F Struct Biol Commun; 2015 Jun; 71(Pt 6):688-96. PubMed ID: 26057797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional analysis of the middle segment of hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions.
    Meyer P; Prodromou C; Hu B; Vaughan C; Roe SM; Panaretou B; Piper PW; Pearl LH
    Mol Cell; 2003 Mar; 11(3):647-58. PubMed ID: 12667448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and functional studies of Leishmania braziliensis Hsp90.
    Silva KP; Seraphim TV; Borges JC
    Biochim Biophys Acta; 2013 Jan; 1834(1):351-61. PubMed ID: 22910377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial Hsp90 is a ligand-activated molecular chaperone coupling ATP binding to dimer closure through a coiled-coil intermediate.
    Sung N; Lee J; Kim JH; Chang C; Joachimiak A; Lee S; Tsai FT
    Proc Natl Acad Sci U S A; 2016 Mar; 113(11):2952-7. PubMed ID: 26929380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical and structural studies of the interaction of Cdc37 with Hsp90.
    Zhang W; Hirshberg M; McLaughlin SH; Lazar GA; Grossmann JG; Nielsen PR; Sobott F; Robinson CV; Jackson SE; Laue ED
    J Mol Biol; 2004 Jul; 340(4):891-907. PubMed ID: 15223329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A molecular clamp in the crystal structure of the N-terminal domain of the yeast Hsp90 chaperone.
    Prodromou C; Roe SM; Piper PW; Pearl LH
    Nat Struct Biol; 1997 Jun; 4(6):477-82. PubMed ID: 9187656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and mechanism of the Hsp90 molecular chaperone machinery.
    Pearl LH; Prodromou C
    Annu Rev Biochem; 2006; 75():271-94. PubMed ID: 16756493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.