BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 21647451)

  • 1. Discovery of protein phosphorylation motifs through exploratory data analysis.
    Chen YC; Aguan K; Yang CW; Wang YT; Pal NR; Chung IF
    PLoS One; 2011; 6(5):e20025. PubMed ID: 21647451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of phosphorylation motif mixtures in phosphoproteomics data.
    Ritz A; Shakhnarovich G; Salomon AR; Raphael BJ
    Bioinformatics; 2009 Jan; 25(1):14-21. PubMed ID: 18996944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mining Conditional Phosphorylation Motifs.
    Liu X; Wu J; Gong H; Deng S; He Z
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(5):915-27. PubMed ID: 26356863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motif-All: discovering all phosphorylation motifs.
    He Z; Yang C; Guo G; Li N; Yu W
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S22. PubMed ID: 21342552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Monte Carlo-based framework enhances the discovery and interpretation of regulatory sequence motifs.
    Seitzer P; Wilbanks EG; Larsen DJ; Facciotti MT
    BMC Bioinformatics; 2012 Nov; 13():317. PubMed ID: 23181585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection and characterization of 3D-signature phosphorylation site motifs and their contribution towards improved phosphorylation site prediction in proteins.
    Durek P; Schudoma C; Weckwerth W; Selbig J; Walther D
    BMC Bioinformatics; 2009 Apr; 10():117. PubMed ID: 19383128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovering sequence motifs.
    Bailey TL
    Methods Mol Biol; 2008; 452():231-51. PubMed ID: 18566768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A correlated motif approach for finding short linear motifs from protein interaction networks.
    Tan SH; Hugo W; Sung WK; Ng SK
    BMC Bioinformatics; 2006 Nov; 7():502. PubMed ID: 17107624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using SCOPE to identify potential regulatory motifs in coregulated genes.
    Martyanov V; Gross RH
    J Vis Exp; 2011 May; (51):. PubMed ID: 21673638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MMFPh: a maximal motif finder for phosphoproteomics datasets.
    Wang T; Kettenbach AN; Gerber SA; Bailey-Kellogg C
    Bioinformatics; 2012 Jun; 28(12):1562-70. PubMed ID: 22531218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cluster refinement algorithm for motif discovery.
    Li G; Chan TM; Leung KS; Lee KH
    IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(4):654-68. PubMed ID: 21030733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discriminative motif discovery in DNA and protein sequences using the DEME algorithm.
    Redhead E; Bailey TL
    BMC Bioinformatics; 2007 Oct; 8():385. PubMed ID: 17937785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NestedMICA as an ab initio protein motif discovery tool.
    Doğruel M; Down TA; Hubbard TJ
    BMC Bioinformatics; 2008 Jan; 9():19. PubMed ID: 18194537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localized motif discovery in gene regulatory sequences.
    Narang V; Mittal A; Sung WK
    Bioinformatics; 2010 May; 26(9):1152-9. PubMed ID: 20223835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SLiMFinder: a probabilistic method for identifying over-represented, convergently evolved, short linear motifs in proteins.
    Edwards RJ; Davey NE; Shields DC
    PLoS One; 2007 Oct; 2(10):e967. PubMed ID: 17912346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MoMo: discovery of statistically significant post-translational modification motifs.
    Cheng A; Grant CE; Noble WS; Bailey TL
    Bioinformatics; 2019 Aug; 35(16):2774-2782. PubMed ID: 30596994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fragment transformation method to detect the protein structural motifs.
    Lu CH; Lin YS; Chen YC; Yu CS; Chang SY; Hwang JK
    Proteins; 2006 May; 63(3):636-43. PubMed ID: 16470805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An iterative statistical approach to the identification of protein phosphorylation motifs from large-scale data sets.
    Schwartz D; Gygi SP
    Nat Biotechnol; 2005 Nov; 23(11):1391-8. PubMed ID: 16273072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast and accurate discovery of degenerate linear motifs in protein sequences.
    Kelil A; Dubreuil B; Levy ED; Michnick SW
    PLoS One; 2014; 9(9):e106081. PubMed ID: 25207816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unsupervised statistical discovery of spaced motifs in prokaryotic genomes.
    Tong H; Schliekelman P; Mrázek J
    BMC Genomics; 2017 Jan; 18(1):27. PubMed ID: 28056763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.