These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

43 related articles for article (PubMed ID: 21647685)

  • 1. CYP153A6, a soluble P450 oxygenase catalyzing terminal-alkane hydroxylation.
    Funhoff EG; Bauer U; García-Rubio I; Witholt B; van Beilen JB
    J Bacteriol; 2006 Jul; 188(14):5220-7. PubMed ID: 16816194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The genome of the moderate halophile Amycolicicoccus subflavus DQS3-9A1(T) reveals four alkane hydroxylation systems and provides some clues on the genetic basis for its adaptation to a petroleum environment.
    Nie Y; Fang H; Li Y; Chi CQ; Tang YQ; Wu XL
    PLoS One; 2013; 8(8):e70986. PubMed ID: 23967144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and use of an alkane transporter plug-in for applications in biocatalysis and whole-cell biosensing of alkanes.
    Grant C; Deszcz D; Wei YC; Martínez-Torres RJ; Morris P; Folliard T; Sreenivasan R; Ward J; Dalby P; Woodley JM; Baganz F
    Sci Rep; 2014 Jul; 4():5844. PubMed ID: 25068650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel strategy for partial purification of alkane hydroxylase from P. chrysogenum SNP5 through reconstituting its native membrane into liposome.
    Das S; Negi S
    Sci Rep; 2024 Feb; 14(1):3779. PubMed ID: 38360875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and Function of Alkane Monooxygenase (AlkB).
    Groves JT; Feng L; Austin RN
    Acc Chem Res; 2023 Dec; 56(24):3665-3675. PubMed ID: 38032826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases.
    Ji Y; Mao G; Wang Y; Bartlam M
    Front Microbiol; 2013; 4():58. PubMed ID: 23519435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel soluble di-iron monooxygenase from the soil bacterium Solimonas soli.
    Yang SNN; Haritos V; Kertesz MA; Coleman NV
    Environ Microbiol; 2024 Feb; 26(2):e16567. PubMed ID: 38233213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An alkane-responsive expression system for the production of fine chemicals.
    Panke S; Meyer A; Huber CM; Witholt B; Wubbolts MG
    Appl Environ Microbiol; 1999 Jun; 65(6):2324-32. PubMed ID: 10347009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome analysis of Acinetobacter calcoaceticus HX09 strain with outstanding crude-oil-degrading ability.
    Chang S; Gui Y; He X; Xue L
    Braz J Microbiol; 2024 Sep; 55(3):2411-2422. PubMed ID: 38837015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ bioremediation of petroleum hydrocarbon-contaminated soil: isolation and application of a Rhodococcus strain.
    Chen X; Shan G; Shen J; Zhang F; Liu Y; Cui C
    Int Microbiol; 2023 May; 26(2):411-421. PubMed ID: 36484911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Overview of the Electron-Transfer Proteins That Activate Alkane Monooxygenase (AlkB).
    Williams SC; Austin RN
    Front Microbiol; 2022; 13():845551. PubMed ID: 35295299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the prevalence and catalytic activity of rubredoxin-fused alkane monooxygenases (AlkBs).
    Williams SC; Forsberg AP; Lee J; Vizcarra CL; Lopatkin AJ; Austin RN
    J Inorg Biochem; 2021 Jun; 219():111409. PubMed ID: 33752122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of different bacterial strains for bioremediation of n-alkanes and polycyclic aromatic hydrocarbons.
    Guermouche M'rassi A; Bensalah F; Gury J; Duran R
    Environ Sci Pollut Res Int; 2015 Oct; 22(20):15332-46. PubMed ID: 25813636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel and competitive pathways for substrate desaturation, hydroxylation, and radical rearrangement by the non-heme diiron hydroxylase AlkB.
    Cooper HL; Mishra G; Huang X; Pender-Cudlip M; Austin RN; Shanklin J; Groves JT
    J Am Chem Soc; 2012 Dec; 134(50):20365-75. PubMed ID: 23157204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and two-dimensional crystallization of membrane component AlkB of the medium-chain alkane hydroxylase system from Pseudomonas putida GPo1.
    Alonso H; Roujeinikova A
    Appl Environ Microbiol; 2012 Nov; 78(22):7946-53. PubMed ID: 22941083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An improved procedure for the purification of catalytically active alkane hydroxylase from Pseudomonas putida GPo1.
    Xie M; Alonso H; Roujeinikova A
    Appl Biochem Biotechnol; 2011 Oct; 165(3-4):823-31. PubMed ID: 21647685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and mechanistic insight into alkane hydroxylation by Pseudomonas putida AlkB.
    Alonso H; Kleifeld O; Yeheskel A; Ong PC; Liu YC; Stok JE; De Voss JJ; Roujeinikova A
    Biochem J; 2014 Jun; 460(2):283-93. PubMed ID: 24646189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whole-cell bio-oxidation of n-dodecane using the alkane hydroxylase system of P. putida GPo1 expressed in E. coli.
    Grant C; Woodley JM; Baganz F
    Enzyme Microb Technol; 2011 May; 48(6-7):480-6. PubMed ID: 22113020
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.