BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 21647775)

  • 1. Redox biochemistry of mammalian metallothioneins.
    Maret W
    J Biol Inorg Chem; 2011 Oct; 16(7):1079-86. PubMed ID: 21647775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Functions of Metamorphic Metallothioneins in Zinc and Copper Metabolism.
    Krężel A; Maret W
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28598392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The zinc/thiolate redox biochemistry of metallothionein and the control of zinc ion fluctuations in cell signaling.
    Krezel A; Hao Q; Maret W
    Arch Biochem Biophys; 2007 Jul; 463(2):188-200. PubMed ID: 17391643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crosstalk of the structural and zinc buffering properties of mammalian metallothionein-2.
    Drozd A; Wojewska D; Peris-Díaz MD; Jakimowicz P; Krężel A
    Metallomics; 2018 Apr; 10(4):595-613. PubMed ID: 29561927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis.
    Colvin RA; Holmes WR; Fontaine CP; Maret W
    Metallomics; 2010 May; 2(5):306-17. PubMed ID: 21069178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The metallothionein/thionein system: an oxidoreductive metabolic zinc link.
    Bell SG; Vallee BL
    Chembiochem; 2009 Jan; 10(1):55-62. PubMed ID: 19089881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular zinc and redox buffering capacity of metallothionein/thionein in health and disease.
    Maret W; Krezel A
    Mol Med; 2007; 13(7-8):371-5. PubMed ID: 17622324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular aspects of human cellular zinc homeostasis: redox control of zinc potentials and zinc signals.
    Maret W
    Biometals; 2009 Feb; 22(1):149-57. PubMed ID: 19130267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiated Zn(II) binding affinities in animal, plant, and bacterial metallothioneins define their zinc buffering capacity at physiological pZn.
    Mosna K; Jurczak K; Krężel A
    Metallomics; 2023 Oct; 15(10):. PubMed ID: 37804185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metallothioneins (MTs) in the human eye: a perspective article on the zinc-MT redox cycle.
    Gonzalez-Iglesias H; Alvarez L; García M; Petrash C; Sanz-Medel A; Coca-Prados M
    Metallomics; 2014 Feb; 6(2):201-8. PubMed ID: 24419560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different redox states of metallothionein/thionein in biological tissue.
    Krezel A; Maret W
    Biochem J; 2007 Mar; 402(3):551-8. PubMed ID: 17134375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal ion release from metallothioneins: proteolysis as an alternative to oxidation.
    Peroza EA; dos Santos Cabral A; Wan X; Freisinger E
    Metallomics; 2013 Sep; 5(9):1204-14. PubMed ID: 23835914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metallothionein redox biology in the cytoprotective and cytotoxic functions of zinc.
    Maret W
    Exp Gerontol; 2008 May; 43(5):363-9. PubMed ID: 18171607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selenium redox biochemistry of zinc-sulfur coordination sites in proteins and enzymes.
    Jacob C; Maret W; Vallee BL
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):1910-4. PubMed ID: 10051568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-coordinative metal selectivity bias in human metallothioneins metal-thiolate clusters.
    Calvo JS; Lopez VM; Meloni G
    Metallomics; 2018 Dec; 10(12):1777-1791. PubMed ID: 30420986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemistry and biology of mammalian metallothioneins.
    Vašák M; Meloni G
    J Biol Inorg Chem; 2011 Oct; 16(7):1067-78. PubMed ID: 21647776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of nitric oxide-mediated metal release from metallothionein by the redox state of glutathione in vitro.
    Khatai L; Goessler W; Lorencova H; Zangger K
    Eur J Biochem; 2004 Jun; 271(12):2408-16. PubMed ID: 15182356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of the N-terminal domain of the wheat metallothionein Ec -1 leads to the formation of three distinct disulfide bridges.
    Tarasava K; Chesnov S; Freisinger E
    Biopolymers; 2016 May; 106(3):295-308. PubMed ID: 27061576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The connection of α- and β-domains in mammalian metallothionein-2 differentiates Zn(II) binding affinities, affects folding, and determines zinc buffering properties.
    Singh AK; Pomorski A; Wu S; Peris-Díaz MD; Czepczyńska-Krężel H; Krężel A
    Metallomics; 2023 Jun; 15(6):. PubMed ID: 37147085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of Zinc and Cadmium Exchanges between Metallothionein and Carbonic Anhydrase.
    Pinter TB; Stillman MJ
    Biochemistry; 2015 Oct; 54(40):6284-93. PubMed ID: 26401817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.