These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Tunable Dual-Thermoresponsive Core-Shell Nanogels Exhibiting UCST and LCST Behavior. Rajan R; Matsumura K Macromol Rapid Commun; 2017 Nov; 38(22):. PubMed ID: 28960587 [TBL] [Abstract][Full Text] [Related]
7. Investigation of dual-sensitive nanogels based on chitosan and N-isopropylacrylamide and its intelligent drug delivery of 10-hydroxycamptothecine. Wang Y; Wang J; Xu H; Ge L; Zhu J Drug Deliv; 2015; 22(6):803-13. PubMed ID: 24512347 [TBL] [Abstract][Full Text] [Related]
8. Fabrication and Characterization of Stable Soy β-Conglycinin-Dextran Core-Shell Nanogels Prepared via a Self-Assembly Approach at the Isoelectric Point. Feng JL; Qi JR; Yin SW; Wang JM; Guo J; Weng JY; Liu QR; Yang XQ J Agric Food Chem; 2015 Jul; 63(26):6075-83. PubMed ID: 26075494 [TBL] [Abstract][Full Text] [Related]
9. "Clickable" Nanogels via Thermally Driven Self-Assembly of Polymers: Facile Access to Targeted Imaging Platforms using Thiol-Maleimide Conjugation. Aktan B; Chambre L; Sanyal R; Sanyal A Biomacromolecules; 2017 Feb; 18(2):490-497. PubMed ID: 28052673 [TBL] [Abstract][Full Text] [Related]
10. Dual stimuli-responsive polymeric hollow nanogels designed as carriers for intracellular triggered drug release. Chiang WH; Ho VT; Huang WC; Huang YF; Chern CS; Chiu HC Langmuir; 2012 Oct; 28(42):15056-64. PubMed ID: 23036055 [TBL] [Abstract][Full Text] [Related]
11. Dielectric properties of thermo-reversible hydrogels: the case of a dextran copolymer grafted with poly(N-isopropylacrylamide). Masci G; Cametti C J Phys Chem B; 2009 Aug; 113(33):11421-8. PubMed ID: 19637897 [TBL] [Abstract][Full Text] [Related]
12. Poly(N-isopropylacrylamide-co-acrylic acid) nanogels for tracing and delivering genes to human mesenchymal stem cells. Park JS; Yang HN; Woo DG; Jeon SY; Park KH Biomaterials; 2013 Nov; 34(34):8819-34. PubMed ID: 23937912 [TBL] [Abstract][Full Text] [Related]
13. Interpenetrating polymer network (IPN) nanogels based on gelatin and poly(acrylic acid) by inverse miniemulsion technique: synthesis and characterization. Koul V; Mohamed R; Kuckling D; Adler HJ; Choudhary V Colloids Surf B Biointerfaces; 2011 Apr; 83(2):204-13. PubMed ID: 21185698 [TBL] [Abstract][Full Text] [Related]
14. Self-assembly of hydrophilic homopolymers: a matter of RAFT end groups. Du J; Willcock H; Patterson JP; Portman I; O'Reilly RK Small; 2011 Jul; 7(14):2070-80. PubMed ID: 21648072 [TBL] [Abstract][Full Text] [Related]
15. Thermosensitive hydrogel-containing polymersomes for controlled drug delivery. Lee JS; Zhou W; Meng F; Zhang D; Otto C; Feijen J J Control Release; 2010 Sep; 146(3):400-8. PubMed ID: 20561894 [TBL] [Abstract][Full Text] [Related]
16. Critical parameters for the controlled synthesis of nanogels suitable for temperature-triggered protein delivery. Theune LE; Charbaji R; Kar M; Wedepohl S; Hedtrich S; Calderón M Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():141-151. PubMed ID: 30948048 [TBL] [Abstract][Full Text] [Related]
17. Responsive PET nano/microfibers via surface-initiated polymerization. Özçam AE; Roskov KE; Genzer J; Spontak RJ ACS Appl Mater Interfaces; 2012 Jan; 4(1):59-64. PubMed ID: 22233710 [TBL] [Abstract][Full Text] [Related]
18. A new multiresponsive drug delivery system using smart nanogels. Demirel GB; von Klitzing R Chemphyschem; 2013 Aug; 14(12):2833-40. PubMed ID: 23794381 [TBL] [Abstract][Full Text] [Related]