These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 21648061)
1. Cell adhesion and proliferation studies on semi-interpenetrating polymeric networks (semi-IPNs) of polyacrylamide and gelatin. Jaiswal M; Koul V; Dinda AK; Mohanty S; Jain KG J Biomed Mater Res B Appl Biomater; 2011 Aug; 98(2):342-50. PubMed ID: 21648061 [TBL] [Abstract][Full Text] [Related]
2. Polycaprolactone diacrylate crosslinked biodegradable semi-interpenetrating networks of polyacrylamide and gelatin for controlled drug delivery. Jaiswal M; Dinda AK; Gupta A; Koul V Biomed Mater; 2010 Dec; 5(6):065014. PubMed ID: 21079283 [TBL] [Abstract][Full Text] [Related]
4. Assessment of multicomponent hydrogel scaffolds of poly(acrylic acid-2-hydroxy ethyl methacrylate)/gelatin for tissue engineering applications. Jaiswal M; Koul V J Biomater Appl; 2013 Mar; 27(7):848-61. PubMed ID: 22207603 [TBL] [Abstract][Full Text] [Related]
5. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering. Gautam S; Chou CF; Dinda AK; Potdar PD; Mishra NC Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():402-9. PubMed ID: 24268275 [TBL] [Abstract][Full Text] [Related]
6. Microstructure and in vitro cellular response to novel soy protein-based porous structures for tissue regeneration applications. Olami H; Zilberman M J Biomater Appl; 2016 Feb; 30(7):1004-15. PubMed ID: 26526932 [TBL] [Abstract][Full Text] [Related]
7. Interpenetrating polymer network (IPN) nanogels based on gelatin and poly(acrylic acid) by inverse miniemulsion technique: synthesis and characterization. Koul V; Mohamed R; Kuckling D; Adler HJ; Choudhary V Colloids Surf B Biointerfaces; 2011 Apr; 83(2):204-13. PubMed ID: 21185698 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and in vitro evaluation of thermosensitive hydrogel scaffolds based on (PNIPAAm-PCL-PEG-PCL-PNIPAAm)/Gelatin and (PCL-PEG-PCL)/Gelatin for use in cartilage tissue engineering. Saghebasl S; Davaran S; Rahbarghazi R; Montaseri A; Salehi R; Ramazani A J Biomater Sci Polym Ed; 2018 Jul; 29(10):1185-1206. PubMed ID: 29490569 [TBL] [Abstract][Full Text] [Related]
9. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength. Maji K; Dasgupta S; Kundu B; Bissoyi A J Biomater Sci Polym Ed; 2015; 26(16):1190-209. PubMed ID: 26335156 [TBL] [Abstract][Full Text] [Related]
10. Macroporous interpenetrating cryogel network of poly(acrylonitrile) and gelatin for biomedical applications. Jain E; Srivastava A; Kumar A J Mater Sci Mater Med; 2009 Dec; 20 Suppl 1():S173-9. PubMed ID: 18597161 [TBL] [Abstract][Full Text] [Related]
11. Relationship between gelatin concentrations in silk fibroin-based composite scaffolds and adhesion and proliferation of mouse embryo fibroblasts. Orlova AA; Kotlyarova MS; Lavrenov VS; Volkova SV; Arkhipova AY Bull Exp Biol Med; 2014 Nov; 158(1):88-91. PubMed ID: 25403405 [TBL] [Abstract][Full Text] [Related]
12. Poly(N-isopropylacrylamide)-based semi-interpenetrating polymer networks for tissue engineering applications. Effects of linear poly(acrylic acid) chains on rheology. Stile RA; Chung E; Burghardt WR; Healy KE J Biomater Sci Polym Ed; 2004; 15(7):865-78. PubMed ID: 15318797 [TBL] [Abstract][Full Text] [Related]
13. Preparation, characterization and bioactivities of nano anhydrous calcium phosphate added gelatin-chitosan scaffolds for bone tissue engineering. Singh YP; Dasgupta S; Bhaskar R J Biomater Sci Polym Ed; 2019 Dec; 30(18):1756-1778. PubMed ID: 31526176 [TBL] [Abstract][Full Text] [Related]
14. In vitro and in vivo efficacy of doxorubicin loaded biodegradable semi-interpenetrating hydrogel implants of poly (acrylic acid)/gelatin for post surgical tumor treatment. Jaiswal M; Naz F; Dinda AK; Koul V Biomed Mater; 2013 Aug; 8(4):045004. PubMed ID: 23715205 [TBL] [Abstract][Full Text] [Related]
15. Scaffolds of Hyaluronic Acid-Poly(Ethyl Acrylate) Interpenetrating Networks: Characterization and In Vitro Studies. Rodríguez-Pérez E; Lloret Compañ A; Monleón Pradas M; Martínez-Ramos C Macromol Biosci; 2016 Aug; 16(8):1147-57. PubMed ID: 27072058 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of nanofibrous scaffolds obtained from blends of chitosan, gelatin and polycaprolactone for skin tissue engineering. Gomes S; Rodrigues G; Martins G; Henriques C; Silva JC Int J Biol Macromol; 2017 Sep; 102():1174-1185. PubMed ID: 28487195 [TBL] [Abstract][Full Text] [Related]
17. Preparation, characterization and microhardness study of semi interpenetrating polymer networks of polyvinyl alcohol and crosslinked polyacrylamide. Mishra S; Bajpai R; Katare R; Bajpai AK J Mater Sci Mater Med; 2006 Dec; 17(12):1305-13. PubMed ID: 17143762 [TBL] [Abstract][Full Text] [Related]
18. Mechanically tough biomacromolecular IPN hydrogel fibers by enzymatic and ionic crosslinking. Hu X; Lu L; Xu C; Li X Int J Biol Macromol; 2015 Jan; 72():403-9. PubMed ID: 25193098 [TBL] [Abstract][Full Text] [Related]
19. Elastic and macroporous agarose-gelatin cryogels with isotropic and anisotropic porosity for tissue engineering. Tripathi A; Kathuria N; Kumar A J Biomed Mater Res A; 2009 Sep; 90(3):680-94. PubMed ID: 18563830 [TBL] [Abstract][Full Text] [Related]
20. Intelligent superabsorbents based on a xanthan gum/poly (acrylic acid) semi-interpenetrating polymer network for application in drug delivery systems. Hajikhani M; Khanghahi MM; Shahrousvand M; Mohammadi-Rovshandeh J; Babaei A; Khademi SMH Int J Biol Macromol; 2019 Oct; 139():509-520. PubMed ID: 31377296 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]