BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

34 related articles for article (PubMed ID: 21648073)

  • 1. Effect of Contact Pressure on the Performance of Carbon Nanotube Arrays Thermal Interface Material.
    Pei Y; Zhong H; Wang M; Zhang P; Zhao Y
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30227621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical and experimental investigations of enhanced carbon nanotube-gold interface conductivity through nitrogen doping.
    Miao R; Liang Y; Wen R; Jiang Z; Wang Y; Shao Q
    Nanoscale; 2023 Dec; 16(1):249-261. PubMed ID: 38054377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation, Microstructure and Thermal Properties of Aligned Mesophase Pitch-Based Carbon Fiber Interface Materials by an Electrostatic Flocking Method.
    Li B; Qin Y; Gao F; Zhu C; Shan C; Guo J; Dong Z; Li X
    Nanomaterials (Basel); 2024 Feb; 14(5):. PubMed ID: 38470724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing surface heat transfer by carbon nanofins: towards an alternative to nanofluids?
    Chiavazzo E; Asinari P
    Nanoscale Res Lett; 2011 Mar; 6(1):249. PubMed ID: 21711780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneously enhanced tenacity, rupture work, and thermal conductivity of carbon nanotube fibers by raising effective tube portion.
    Zhang X; De Volder M; Zhou W; Issman L; Wei X; Kaniyoor A; Terrones Portas J; Smail F; Wang Z; Wang Y; Liu H; Zhou W; Elliott J; Xie S; Boies A
    Sci Adv; 2022 Dec; 8(50):eabq3515. PubMed ID: 36516257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal Conductivity of Metal-Coated Tri-Walled Carbon Nanotubes in the Presence of Vacancies-Molecular Dynamics Simulations.
    Dhumal RS; Bommidi D; Salehinia I
    Nanomaterials (Basel); 2019 May; 9(6):. PubMed ID: 31142028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model analysis of temperature dependence of abnormal resistivity of a multiwalled carbon nanotube interconnection.
    Yeh YC; Chang LW; Miao HY; Chen SP; Lue JT
    Nanotechnol Sci Appl; 2010; 3():37-43. PubMed ID: 24198469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and Theoretical Studies of the Thermal Contact Conductance for Bundles of Round Steel Bars.
    Wyczółkowski R; Bagdasaryan V; Strycharska D
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Speed Modulation of Polarized Thermal Radiation from an On-Chip Aligned Carbon Nanotube Film.
    Matano S; Komatsu N; Shimura Y; Kono J; Maki H
    Nano Lett; 2023 Nov; 23(21):9817-9824. PubMed ID: 37882802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical, thermal and noise properties of platinum-carbon free-standing nanowires designed as nanoscale resistive thermal devices.
    Piasecki T; Kwoka K; Gacka E; Kunicki P; Gotszalk T
    Nanotechnology; 2023 Dec; 35(11):. PubMed ID: 38064743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Near-Wall Pebble Bed Thermal Conductivity for Energy Applications.
    Wada K; Eixenberger J; Stout D; Jaques BJ; Otanicar T; Estrada D
    ACS Omega; 2024 Jan; 9(1):1614-1619. PubMed ID: 38222600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of intrinsic strain on the thermal expansion behavior of Janus MoSSe nanotubes: a molecular dynamic simulation.
    Zhang RS; Yin XL; Zhang YL; Jiang JW
    Nanotechnology; 2023 Dec; 35(7):. PubMed ID: 37976546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 70th Year Anniversary of Carbon Nanotube Discovery-Focus on Real-World Solutions.
    Paramsothy M
    Nanomaterials (Basel); 2023 Dec; 13(24):. PubMed ID: 38133060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remarkable heat conduction mediated by non-equilibrium phonon polaritons.
    Pan Z; Lu G; Li X; McBride JR; Juneja R; Long M; Lindsay L; Caldwell JD; Li D
    Nature; 2023 Nov; 623(7986):307-312. PubMed ID: 37880364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apparent self-heating of individual upconverting nanoparticle thermometers.
    Pickel AD; Teitelboim A; Chan EM; Borys NJ; Schuck PJ; Dames C
    Nat Commun; 2018 Nov; 9(1):4907. PubMed ID: 30464256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Electrical Contact Resistance on Measurement of Thermal Conductivity and Wiedemann-Franz Law for Individual Metallic Nanowires.
    Wang J; Wu Z; Mao C; Zhao Y; Yang J; Chen Y
    Sci Rep; 2018 Mar; 8(1):4862. PubMed ID: 29559677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Significantly enhanced thermal conductivity of indium arsenide nanowires via sulfur passivation.
    Xiong Y; Tang H; Wang X; Zhao Y; Fu Q; Yang J; Xu D
    Sci Rep; 2017 Oct; 7(1):13252. PubMed ID: 29038573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local heating of molecular motors using single carbon nanotubes.
    Inoue Y; Ishijima A
    Biophys Rev; 2016 Mar; 8(1):25-32. PubMed ID: 28510142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of the intrinsic thermal conductivity of a multiwalled carbon nanotube and its contact thermal resistance with the substrate.
    Yang J; Yang Y; Waltermire SW; Gutu T; Zinn AA; Xu TT; Chen Y; Li D
    Small; 2011 Aug; 7(16):2334-40. PubMed ID: 21648073
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.