These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 21648073)

  • 21. Detecting mechanical resonance in carbon nanotubes via inter-tube electrical transport measurements.
    Singh JP; Teki R; Ci L; Ajayan P; Koratkar N
    J Nanosci Nanotechnol; 2008 Jan; 8(1):436-8. PubMed ID: 18468098
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Theoretical and experimental investigations of enhanced carbon nanotube-gold interface conductivity through nitrogen doping.
    Miao R; Liang Y; Wen R; Jiang Z; Wang Y; Shao Q
    Nanoscale; 2023 Dec; 16(1):249-261. PubMed ID: 38054377
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical absorption and thermal transport of individual suspended carbon nanotube bundles.
    Hsu IK; Pettes MT; Bushmaker A; Aykol M; Shi L; Cronin SB
    Nano Lett; 2009 Feb; 9(2):590-4. PubMed ID: 19140691
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Strain controlled thermomutability of single-walled carbon nanotubes.
    Xu Z; Buehler MJ
    Nanotechnology; 2009 May; 20(18):185701. PubMed ID: 19420624
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring advantages of diverse carbon nanotube forests with tailored structures synthesized by supergrowth from engineered catalysts.
    Zhao B; Futaba DN; Yasuda S; Akoshima M; Yamada T; Hata K
    ACS Nano; 2009 Jan; 3(1):108-14. PubMed ID: 19206256
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electron transport in very clean, as-grown suspended carbon nanotubes.
    Cao J; Wang Q; Dai H
    Nat Mater; 2005 Oct; 4(10):745-9. PubMed ID: 16142240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ballistic phonon thermal transport in multiwalled carbon nanotubes.
    Chiu HY; Deshpande VV; Postma HW; Lau CN; Mikó C; Forró L; Bockrath M
    Phys Rev Lett; 2005 Nov; 95(22):226101. PubMed ID: 16384238
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular dynamics simulations of carbon nanotube/silicon interfacial thermal conductance.
    Diao J; Srivastava D; Menon M
    J Chem Phys; 2008 Apr; 128(16):164708. PubMed ID: 18447480
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermocompression bonding of vertically aligned carbon nanotube turfs to metalized substrates.
    Johnson RD; Bahr DF; Richards CD; Richards RF; McClain D; Green J; Jiao J
    Nanotechnology; 2009 Feb; 20(6):065703. PubMed ID: 19417397
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of elastic wave dispersion relations to estimate thermal properties of nanoscale wires and tubes of varying wall thickness and diameter.
    Bifano MF; Kaul PB; Prakash V
    Nanotechnology; 2010 Jun; 21(23):235704. PubMed ID: 20472943
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hot nanotubes: stable heating of individual multiwall carbon nanotubes to 2000 k induced by the field-emission current.
    Purcell ST; Vincent P; Journet C; Binh VT
    Phys Rev Lett; 2002 Mar; 88(10):105502. PubMed ID: 11909368
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Length dependence of carbon nanotube thermal conductivity and the "problem of long waves".
    Mingo N; Broido DA
    Nano Lett; 2005 Jul; 5(7):1221-5. PubMed ID: 16178214
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Charge transport in a single superconducting tin nanowire encapsulated in a multiwalled carbon nanotube.
    Tombros N; Buit L; Arfaoui I; Tsoufis T; Gournis D; Trikalitis PN; van der Molen SJ; Rudolf P; van Wees BJ
    Nano Lett; 2008 Sep; 8(9):3060-4. PubMed ID: 18698723
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrical conductivities of composites with aligned carbon nanotubes.
    Li C; Chou TW
    J Nanosci Nanotechnol; 2009 Apr; 9(4):2518-24. PubMed ID: 19437996
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scanned probe microscopy of electronic transport in carbon nanotubes.
    Bachtold A; Fuhrer MS; Plyasunov S; Forero M; Anderson EH; Zettl A; McEuen PL
    Phys Rev Lett; 2000 Jun; 84(26 Pt 1):6082-5. PubMed ID: 10991129
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unusually high thermal conductivity of carbon nanotubes.
    Berber S; Kwon YK; Tomanek D
    Phys Rev Lett; 2000 May; 84(20):4613-6. PubMed ID: 10990753
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal conductance of an individual single-wall carbon nanotube above room temperature.
    Pop E; Mann D; Wang Q; Goodson K; Dai H
    Nano Lett; 2006 Jan; 6(1):96-100. PubMed ID: 16402794
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Breakdown of Fourier's law in nanotube thermal conductors.
    Chang CW; Okawa D; Garcia H; Majumdar A; Zettl A
    Phys Rev Lett; 2008 Aug; 101(7):075903. PubMed ID: 18764555
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Negative differential conductance and hot phonons in suspended nanotube molecular wires.
    Pop E; Mann D; Cao J; Wang Q; Goodson K; Dai H
    Phys Rev Lett; 2005 Oct; 95(15):155505. PubMed ID: 16241738
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Turning carbon nanotubes from exceptional heat conductors into insulators.
    Prasher RS; Hu XJ; Chalopin Y; Mingo N; Lofgreen K; Volz S; Cleri F; Keblinski P
    Phys Rev Lett; 2009 Mar; 102(10):105901. PubMed ID: 19392127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.